SelectiveCS-FEM-T10: Selective cell-based smoothed finite element methods with 10-node tetrahedral elements

Yuki ONISHI Tokyo Institute of Technology, Japan

- Smoothed finite element method (S-FEM) is a relatively new FE formulation proposed by Prof. G. R. Liu in 2006.
- S-FEM is one of the **strain smoothing** techniques.
- There are several types of classical S-FEMs depending on the domains of strain smoothing.
- For example in 2D triangular mesh:

P. 2

How popular is S-FEM?

Number of journal papers written in English whose title contains "smoothed finite element":

The attraction of S-FEM is expanding continuously.

Applications of S-FEMs in Our Lab

Solid mechanics

Tokyo Institute of Technology

P. 4

Pursuing Excellence

Motivation

What we want to do:

- Solve hyper large deformation analyses accurately and stably.
- Treat complex geometries with tetrahedral meshes.

Consider nearly incompressible materials ($\nu \simeq 0.5$).

ICCM2019

P. 5

- Support **contact** problems.
- Handle auto re-meshing.

okvo Institute of Technolo

Conventional tetrahedral (T4/T10) FE formulations still have issues in accuracy or stability especially in nearly incompressible cases. ■ 2nd or higher order elements: X Volumetric locking. Accuracy loss in large strain due to intermediate nodes. B-bar method, F-bar method, Selective reduced integration: X Not applicable to tetrahedral element directly. ■ F-bar-Patch method: X Difficulty in building good-quality patches. u/p mixed (hybrid) method: (e.g., ABAQUS/Standard C3D4H and C3D10MH) X Pressure checkerboarding, Early convergence failure etc.. F-bar type smoothed FEM (F-barES-FEM-T4): \checkmark Accurate & stable X Hard to implement in FEM codes.

Issues (cont.)

E.g.) Compression of neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

1st order hybrid T4 (C3D4H)

- No volumetric locking
- X Pressure checkerboarding
- X Shear & corner locking

2nd order modified hybrid T10 (C3D10MH)

- ✓ No shear/volumetric locking
- ✗ Early convergence failure
- X Low interpolation accuracy

Pressure

.000e+09

東京工業

Tokyo Institute of Technology

Issues (cont.)

E.g.) Compression of neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

Same mesh as C3D4H case.

Tokyo Institute of Technology

Although F-barES-FEM-T4 is accurate and stable, **X** it cannot be implemented in general-purpose FE software due to the adoption of ES-FEM. Also, it cosumes larger memory & CPU costs.

Another approach adopting CS-FEM with T10 element would be effective.

Objective

To develop an S-FEM formulation using T10 mesh (SelectiveCS-FEM-T10) for severe large deformation analyses.

Table of Body Contents

- Quick introduction of F-barES-FEM-T4
 Why not T4 but T10? –
- Formulation of SelectiveCS-FEM-T10
- Demonstrations of SelectiveCS-FEM-T10
- Summary

Quick Introduction of F-barES-FEM-T4 – Why not T4 but T10? –

Brief of Edge-based S-FEM (ES-FEM)

- Calculate [B] at each element as usual.
- Distribute [B] to the connecting edges with area weight and build [^{Edge}B].
- Calculate $F, T, \{f^{\text{int}}\}$ etc. in each edge smoothing domain.

Brief of Node-based S-FEM (NS-FEM)

- Calculate [B] at each element as usual.
- Distribute [B] to the connecting nodes with area weight and build [^{Node}B].
- Calculate $F, T, \{f^{\text{int}}\}$ etc. in each node smoothing domain.

Concept of F-barES-FEM

Concept: combining ES-FEM and NS-FEM using F-bar method

Formulation of F-barES-FEM (1 of 2)

Deformation gradient of each edge (\overline{F}) is derived as

$$\overline{F} = \widetilde{F}^{\mathrm{iso}} \cdot \overline{F}^{\mathrm{vol}}$$

in the manner of F-bar method.

Formulation of F-barES-FEM (2 of 2)

Each part of \overline{F} is calculated as

$$\overline{F} = \widetilde{F}^{\text{iso}} \cdot \overline{F}^{\text{vol}}$$

Isovolumetric part

Smoothing the value of adjacent elements. (same manner as ES-FEM)

Volumetric part

(1)Calculating node's value by smoothing the value of adjacent elements
(2)Calculating elements' value by smoothing the value of adjacent nodes
(3)Repeating (1) and (2) a few times

Advantages of F-barES-FEM

This formulation is designed to have 3 advantages.

3. Volumetric locking free with the aid of F-bar method

Arruda-Boyce hyperelastic material ($v_{ini} = 0.499$).

- Applying pressure on ¼ of the top face.
- Result of F-barES-FEM-T4 is compared to ABAQUS C3D4H with the same unstructured T4 mesh.

Static Implicit Compression of Rubber Block

Smooth pressure distributions are obtained.

Stretch of Filler-containing Rubber with 2D Remesing

- Several hard circular fillers are distributed in a square soft matrix rubber (neo-Hookean hyperelastic with $v_{ini} = 0.49$).
- \blacksquare E_{ini} of the filler is 100 times larger than E_{ini} of the matrix.
- Left side is constrained and right side is displaced.

Valid Mises stress dist. is obtained after many time remeshings.

Static

Implicit

Static Implicit Shear-tensioning of Elasto-plastic cylinder

- Aluminium cylinder subjected to enforced disp..
- Pure shear at the initial stage, but stretch dominates at the later stage.
- Necking occurs in the end.

Valid plastic strain dist. is obtained after many time remeshings.

Final stretch at the neck is more than 7000%.

Characteristics of F-barES-FEM-T4

✓ No increase in DOF.

(No Lagrange multiplier. No static condensation.)

- Locking- & checkerboarding-free with T4 mesh.
- X Higher costs in memory and CPU time due to wider bandwidth of [K].

In case of standard unstructured T4 meshes:

Method	Approx. Bandwidth
Standard FEM-T4	40
F-barES-FEM-T4(1)	390

X Difficulty in implementation to existing FE codes due to the smoothing across elements. Critical Issue!!

Why Not T4 But T10?

If we cannot implement F-barES-FEM-T4 to existing FE codes, then we have to code **everything** in our in-house code for practical use.

For example in tire analyses:

- Material constitutive models,
- Structural elements,
- Cohesive elements,
- Contact functionality and so on.

MSC Software web page

Therefore, choosing S-FEM-T4 leads us to the long and winding road...

We gave up T4 and chose T10 for solid mechanics analyses.

Formulation of SelectiveCS-FEM-T10

Concept of SelectiveCS-FEM-T10

Our new approach using T10 mesh.

- Adopting CS-FEM having no smoothing across multiple elements, SelectiveCS-FEM-T10 becomes an independent finite element.
 - \Rightarrow We can implement it as an element of existing FE code.
- Same memory & CPU costs as the T10 elements.

Brief of Cell-based S-FEM (CS-FEM)

- Subdivide each element into some sub-element.
- Calculate [^{SubE}B] at each sub-element.
- Calculate $F, T, \{f^{\text{int}}\}$ etc. in each sub-element.

Flowchart of SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

(1) Subdivision into T4 Sub-elements

- Introduce no dummy node (i.e., asymmetric element).
- Subdivide a T10 element into <u>eight T4 sub-elements</u> and calculate their *B*-matrices and strains.

(2) Deviatoric Strain Smoothing

- Perform strain smoothing in the manner of ES-FEM (i.e., average dev. strains of sub-elements at edges).
- Evaluate deviatoric strain and stress at edges.

(3) Volumetric Strain Smoothing

The spatial order of vol. strain should be lower than that of dev. strain to avoid volumetric locking.

Treat the overall mean vol. strain of all sub-elements as the uniform element vol. strain (i.e., same approach as SRI elements).

(4) Combining with SRI Method

Demonstration of SelectiveCS-FEM-T10

Static Implicit Bending of Hyperelastic Cantilever

<u>Outline</u>

- Neo-Hookean hyperelastic material
- Initial Poisson's ratio: $v_0 = 0.49$
- Compared to ABAQUS C3D10MH (modified hybrid T10 element) with the same mesh.

Static Implicit Bending of Hyperelastic Cantilever

Comparison of the deflection disp. at the final state

No volumetric locking is observed.

Static **Bending of Hyperelastic Cantilever** Implicit Comparison of the pressure dist. at the final state +2.000e+08 S, Pressure +1.667e+08 (Avg: 75%) +1.333e+08 +9.279e+08 000e+08 1.000e+08 667e+08 +6.667e+07 Pressure 333e+08 000e+08 +3.333e+07 667e+07 +0.000e+00 333e+07 000e+00 3.333e+07 333e+07 6.667e+07 1.000e+08 1.333e+08 2.000e+08 667e+08 421e+09 2.000e+08 **ABAQUS** Selective CS-FEM-T10 C3D10MH

Almost the same pressure distributions with no checkerboarding.

Static Implicit Bending of Hyperelastic Cantilever

Comparison of the Mises stress dist. at the final state

Almost the same Mises stress distributions.

Static Implicit Barreling of Hyperelastic Cylinder

- Enforce axial displacement on the top face.
- Neo-Hookean body with $v_{ini} = 0.49$.
- Compare results with ABAQUS T10 hybrid elements (C3D10H, C3D10MH, C3D10HS) using the same mesh.

Static Implicit Barreling of Hyperelastic Cylinder

Static Implicit Barreling of Hyperelastic Cylinder

Static Marreling of Hyperelastic Cylinder <u>Comparison of Mises stress at 24% comp.</u>

All results are similar to each other except around the rim having stress singularity.

Static Implicit Barreling of Hyperelastic Cylinder Comparison of pressure at 24% comp.

All results are similar to each other except around the rim having stress singularity.

ICCM2019 P. 40

TOK

Pursuing Excellence

Static Barreling of Hyperelastic Cylinder Comparison of nodal reaction force at 24% comp.

Selective	ABAQUS	ABAQUS	ABAQUS
CS-FEM-T10	C3D10H	C3D10MH	C3D10HS

ABAQUS C3D10H and C3D10HS suffer from nodal force oscillation.

Arruda-Boyce hyperelastic material ($v_{ini} = 0.499$).

- Applying pressure on ¼ of the top face.
- Compared to ABAQUS C3D10MH with the same unstructured T10 mesh.

Pursuina Excellence

東京工業フ

Tokyo Institute of Technology

<u>Animation</u>	
of	
Mises stress	ess
dist.	ses_Str
(Selective	Mi
CS-FEM-T10)	

-+1.000e+09 -+9.167e+08 -+8.333e+08 -+7.500e+08 -+6.667e+08 -+5.833e+08 -+5.000e+08 -+4.167e+08 -+3.333e+08 -+2.500e+08 -+1.667e+08 -+1.667e+08 -+8.333e+07 -+0.000e+00

The present element presents Mises stress oscillation.

凤

Less smoothed Mises stress is observed in SelectiveCS-FEM-T10. Further improvement is still required.

Characteristics of SelectiveCS-FEM-T10

<u>Benefits</u>

✓ Accurate

(no locking, no checkerboarding, no force oscillation).

- Robust (long-lasting in large deformation).
- ✓ No increase in DOF (No static condensation).
- ✓ Same memory & CPU costs as the other T10 elements.
- Implementable to commercial FE codes (e.g., ABAQUS UEL).

<u>Drawbacks</u>

X Mises stress oscillation in same extreme analyses.

X No longer a T4 formulation.

SelectiveCS-FEM-T10 is competitive with the best ABAQUS T10 element, C3D10MH.

Summary

<u>One-sentence summary</u>

SelectiveCS-FEM-T10 is already good enough for practical use as compared to ABAQUS Tet elements.

<u>Take-home message</u>

Please consider implementing SelectiveCS-FEM-T10 to your in-house code. It's supremely useful & easy to code!!

Thank you for your kind attention!

Appendix

Differences between Old and New

- 1. The new formulation has NO dummy node at the center of an element.
 - Fewer sub-elements and edges.
 - Asymmetric element.
- 2. The new formulation has No ES-FEM⁻¹ after ES-FEM.
 - Strain & stress evaluation at edges.
 - No strain smoothing at frame edges.

Intuitively, the lack of element symmetry and frame edge smoothing is not good for accuracy and stability; however, the new formulation is better in fact.

Its reason has not revealed yet.

Viscous Implicit Collapse Analysis of Viscoelastic Bunny

- Applying gravity to the Stanford Bunny and let it collapsed by its self-weight.
- Soft viscoelastic material ($\nu_0 = 0.3, \nu_{\infty} = 0.49, \tau = 10$ s).
- Contact is NOT considered.
- Comparing F-barES-FEM-T4(2) and ABAQUS C3D4H.

Viscous Implicit

<u>Animation</u> <u>of</u> <u>Deformation</u>

Because contact is not considered, the body penetrates the feet and finally becomes upside downside. The analysis lasts till the necking.

+3.000e-01 Magnitu .750e-01 500e 01 01 +2.250e .000e 01 750e -01 lacement 500e -01 +1.250e-01 .000e-01 +7.500e-02 -+5.000e-02 +2.500e-02 +0.000e+00

Viscous Implicit Collapse Analysis of Viscoelastic Bunny

Mises stress dist. when C3D4H get a convergence failure

ABAQUS C3D4H shows a stiffer result due to shear locking.
 The result of F-barES-FEM-T4 would be better.

Impact of Rubber Bunny

<u>Outline</u>

Dynamic

Explicit

<u>Rigid Wall</u> Contact condition free-slip, freeseparation

- A bunny made of rubber (iveo-rookean) is crushed to a rigid wall.
- Compared with ABAQUS/Explicit C3D4 using a same T4 mesh.
- Note that neither Hex mesh nor hybrid elements is not available in this problem.

Explicit Impact of Rubber Bunny

Animation of Pressure Dist.

ABAQUS/Explicit C3D4 X Pressure

Checkerboarding

X Shear Locking

SymF-barES-FEM-T4(1)

✓ Smooth pressure✓ No Locking

The proposed S-FEM captures the pressure wave in a complex body successfully!!

Issues (cont.)

E.g.) Compression of neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

As other S-FEMs, SelectiveCS-FEM-T10 has many varieties in the formulation.

The proposed method last year was not an optimal formulation yet.

- ✓ No shar/voluemetric locking
- ✓ Little corner locking
- Little pressure checkerboarding
- Same cost & userbility as T10 elements.

Same mesh

case.

as C3D10MH

Static Implicit Shear-tensioning of Elasto-plastic Bar

Elasto-plastic material:

- Hencky elasticity with E = 1 GPa and v = 0.3.
- Isotropic von Mises yield criterion with $\sigma_{\rm Y} = 1$ MPa and H = 0.1 GPa (constant).
- Blue face is perfectly constrained.
- Red face is constrained in plane and pressed down.
- Compared to ABAQUS C3D4H with the same unstructured T4 mesh.

Static Implicit Shear-tensioning of Elasto-plastic Bar

<u>Result of</u> <u>F-bar</u> <u>ES-FEM(2)</u> (Equiv. plastic strain)

Extreme large deformation with smooth strain dist. is successfully achieved.

Static Implicit Shear-tensioning of Elasto-plastic Bar

