Automotive Electrodeposition Coating Simulation using Edge-based Smoothed Finite Element Method

Yuki ONISHI (Institute of Science Tokyo)

Relatively Long Introduction to Electrodeposition Simulation

What is Electrodeposition (ED)?

- Most widely-used anti-rust base-coat methods for various metal products including auto carbodies.
- Depositing coating film by applying direct electric current in a paint pool.
- In the actual car manufacturing line, the carbodies are moving in the paint pool.
- Relatively good at depositing a uniform film on complex shapes such as carbody.

What is Electrodeposition (ED)?

Importance of ED for safety

Quiz.) Is this car safe as when it was new?

- No, because corrosion significantly reduces the strength and stiffness of a car.
- As corrosion progresses, the initial strength and stiffness cannot be guaranteed.
- Nevertheless, the safety inspections of cars (e.g., crash tests) are usually performed with new cars without corrosion.....

 \therefore ED is quite important for ensuring the long-term safety of carbodies.

Impact of ED process on carbody design

Undercarriages are exposed to severe corrosive environments.

- ED film thickness must be above minimum over the entire surface of the undercarriages.
- Some undercarriage parts (e.g., side sills) have bag-like structures with multiple plates.
- It is necessary to drill many ED holes to allow the electric current to pass through in the paint pool.

∴ Carbody designers should understand and consider the ED process, including the location, size, and number of ED holes.

Need for ED Simulation

- ED holes are essential for corrosion protection, but they are NOT welcome for strength or stiffness.
- Thus, the following conflict always occurs between carbody designers.

Designer in Corrosion Section

Designer in Strength/Stiffness Section

In such a case, **ED simulation** can resolve the conflict based on quantitative evidence data and lead to the optimal carbody design.

What is ED Simulation?

Actual ED Line

ED Simulation

Institute of

SCIENCE TOKYO

Paint Carbodies Electrodes Pool w/ Motion (Anodes)

Total length: about 30 m

1. Paint Pool

- 2. Carbodies with Motion
- 3. Electrodes (Anodes)

are reproduced in a computer.

P. 8 COMPSAFE2025

What is ED Simulation?

Identified via

lab experiments.

- Governing equation: Motion: Overset mesh method Electrostatic Laplace equation $(\nabla^2 \phi = 0)$ in the paint pool domain.
- Boundary conditions:
 - Wall (insulation) BC,
 - Anodic (electrode surface) BC,
 - 3. Cathodic (carbody surface) BC:
 - Film initiation/growth/resistance constitutive models.

- Outputs: Time-histories of
 - Surface potential,
 - Current density,
 - Film thickness
- Final film thickness
- \leftarrow is the main output.

Issue #1: Impossible to make a good HEX mesh for carbodies.

Animated slices of a carbody mesh from rear to front

- An ED simulation requires a mesh for the space around the carbody like CFD.
- In contrast to CFD, an ED mesh should include the room space and many narrow spaces among plates (such as inside of the side sill).

■ The shape of a carbody is too complex to be discretized into a good HEX mesh.

- The Cartesian mesh (e.g., cutcell mesh, snappy hex mesh, cube mesh) is basically NOT suitable for the geometry with many holes.
 - (∵ Massive increase in DOF, Linear mesh convergence rate of H8 element, Presence of hanging nodes or polyhedral cells)

TET meshes are preferable in ED simulation.

<u>Issue #2: Both the standard 4-node and 10-node tetrahedral elements are inconvenient.</u>

- 4-node TET (T4) has poor accuracy with only a linear mesh convergence rate.
 ⇒ FEM-T4 and FVM-T4 require very fine meshes to obtain accurate results.
- 10-node TET (T10) has good accuracy with a quadratic mesh convergence rate; however, T10 mesh requires a massively large DOF to represent complex shapes without any kink in element shapes.

 \Rightarrow If there is a small **hole** on a carbody plate, the surface mesh around the hole looks like...

carbody mesh to achieve accurate simulation with minimal DOF.

Motivation

By the way, ...

- The smoothed finite element method (S-FEM) [detail later] has become popular in recent years as a next-generation high-performance FEM.
- Especially, the edge-based S-FEM using T4 mesh (ES-FEM-T4) is known to achieve a superlinear mesh convergence rate even with T4 meshes.

Therefore, we expect that...

ES-FEM-T4 could be a solution for the meshing issues to achieve fast and accurate ED simulation.

Development of ED simulator using ES-FEM-T4 for practical (fast & accurate) ED simulations.

Table of body contents:

- 1. Quick Introduction to S-FEM
- 2. Mesh Convergence Test
- 3. Validation Test
- 4. Summary

Quick Introduction to Smoothed Finite Element Method (S-FEM)

What is S-FEM?

- Smoothed finite element method (S-FEM) is a relatively new FE formulation proposed in 2006.
- S-FEM is one of the **gradient (strain) smoothing** techniques.
- Many types of S-FEMs have been developed with various smoothing schemes.
- There are a few *classical* S-FEMs depending on the smoothing domain.
- For example, in a 2D triangular mesh:

Each colored area shows the domain for gradient smoothing.

Brief of ES-FEM in Linear Elastic Analysis

- Let us consider a mesh with only two 3-node triangular cells.
- Make [B] (= dN/dx) at each cell as usual.

nstitute of

- At each edge, gather [B]s of the connecting cells and average them with area weights to build [Edge B].
- Calculate strain (ϵ), stress (σ) and nodal internal force { f^{int} } in each edge smoothing domain with [^{Edge}B].

Let me explain in 2D for simplicity

18

COMPSAFE2025

Performance of ES-FEM in Linear Elastic Analysis

Cantilever Bending Analysis with Dead Load at the Tip Size:10x1 m, v = 0.3

ES-FEM-T3 gives more accurate stress/strain distributions than the standard FEM-T3 using the same mesh.

Performance of ES-FEM in Linear Elastic Analysis

Mesh Convergence in Displacement

Institute of

SCIENCE TOKYO

ES-FEM-T3 is shear locking free and thus the mesh convergence rate of displacement/force is much faster than the Standard FEM-T3.

ES-FEM-T4 should also be excellent in electrostatic (ED) simulations.

> **P. 20** COMPSAFE2025

<u>Outline</u>

Our ED simulator, which uses FEM-T3, has been rewritten to use ES-FEM-T4.

- Half-body analysis (only right-hand side).
- The entire line shape, carbody motion, and electrode conditions are reproduced.
- About 1000 timesteps for 300 s (i.e., average $\Delta t = 0.3$ s).
- The film thickness distribution is evaluated with 3 different density meshes using FEM-T4 and ES-FEM-T4.

Overview of Surface Mesh of 10M Element Mesh

■ There are many **ED holes** around narrow spaces among plates.

Overview of Surface Mesh of 16M Element Mesh

■ There are many ED holes around narrow spaces among plates.

Overview of Surface Mesh of 51M Element Mesh

■ There are many ED holes around narrow spaces among plates.

Animation of Film Thickness (ES-FEM-T4 with 51M Element Mesh)

Final Film Thickness Distribution on the side sill part with 51M Element Mesh

Standard FEM shows *a little thicker* result. This result is regarded as the *reference* solution. (The center of the side sill is Yellow.) (The center of the side sill is Green)

Final Film Thickness Distribution on the side sill part with 16M Element Mesh

Standard FEM shows *a much thicker* result. (The center of the side sill is Orange.) EDESFEM shows an *accurate* result. (The center of the side sill is Green.)

Final Film Thickness Distribution on the side sill part with 10M Element Mesh

Standard FEM shows *a massively thicker* result. (The center of the side sill is Red.) EDESFEM shows *a little thicker* result. (The center of the side sill is Yellow.)

Institute of

SCIENCE TOKYO

Comparison of Time-histories of Film Thickness at a Sample Point on Side Sill

- FEM-T4 with 51M elems. and ES-FEM-T4 with 10M elems. has almost comparable accuracy.
- ES-FEM-T4 with 16M elems. gives a practically converged result.

Comparison of Calculation Time

On a cluster (64 CPUs: 896 cores of Intel Xeon E5-2680 v4 on TSUBAME3.0)

# of Elements		Present Method (ES-FEM-T4)
10M	1.6 h	1.9 h
16M	2.3 h	3.4 h
51M	6.0 h 🖓 🔻	8.5 h

- With the same mesh, ES-FEM-T4 is slower than FEM by x1.5.
- For the same accuracy, ES-FEM-T4 is faster than FEM by x3.

For the simulations of actual ED lines, ES-FEM-T4 is 3 times efficient than FEM-T4.

Ch.3: Side Door

- Measurement
- A surface potential logging device with 6 probes was mounted on a car running on an actual ED line.

- > After baking, the film thickness was measured at the probe points.
- Simulation (Same as the mesh convergence test.)
- Half-body analysis (only right-hand side).
- > The entire line shape, carbody motion, and standard electrode conditions are input.

Surface potential time history and final film thickness at the 6 points are compared.

Institute of SCIENCE TOKYO Ch.2: Hood

Ch.5: Side Sill

Ch.6: Floor

(not visible on this Fig.)

Validation of Surface Potential (Ch. 2 and 3)

The simulated surface potential is a little high

because the degradation of the membranes of electrodes was not precisely simulated; yet, the results generally agree with practical accuracy.

Validation of Surface Potential (Ch. 4 and 5)

The simulated surface potential is a little high

because the degradation of the membranes of electrodes was not precisely simulated; yet, the results generally agree with practical accuracy.

Validation of Surface Potential (Ch. 6 and 7)

The simulated surface potential is a little high

because the degradation of the membranes of electrodes was not precisely simulated; yet, the results generally agree with practical accuracy.

SCIENCE TOKYO

Validation of Final Film Thickness

Point	Measured (μm)	Simulated (µm)	Error (µm)
Ch.2: Hood	20.1	21.4	+1.3 (+6.5%)
Ch.3: Side Door	19.0	21.0	+2.0 (+10.5%)
Ch.4: Roof	17.0	19.3	+2.3 (+13.5%)
Ch.5: Side Sill	20.0	21.6	+1.6 (+8.0%)
Ch.6: Floor	—	14.5	—
Ch.7: Back Door	23.0	20.3	-2.7 (-11.7%)

Although there is still room for improvement in accuracy, the maximum error in film thickness is less than 3 μ m, which is accurate enough for practical use.

Summary

Summary

- Electrodeposition (ED) is important for automotive safety.
- Tetrahedral meshes are preferable in ED Simulation.
- **ES-FEM-T4** has excellent accuracy for solving Laplace equation.
- In the actual line ED simulations, ES-FEM-T4 is 3 times faster than the standard FEM-T4 to obtain the same accuracy result.
- The effectiveness of our ED simulator was validated by several car companies.
- The application scope of ES-FEM-T4 and related FE formulations is now beginning to extend beyond Laplace simulations to solid, fluid, and acoustic simulations.
 Search edesfem
- □ If you are interested in our ED simulator, please check the website.

Thank you for your kind attention!