<u>F-bar</u> aided <u>Edge-based</u> <u>Smoothed Finite Element Method</u> with Tetrahedral Elements for Large Deformation Analysis of Nearly Incompressible Materials

Yuki ONISHI Tokyo Institute of Technology (Japan)

ICCM2015

Motivation & Background

<u>Motivation</u>

We want to analyze **severe large deformation** of nearly incompressible solids **accurately and stably**!

(Target: automobile tire, thermal nanoimprint, etc.)

<u>Background</u>

Finite elements are **distorted** in a short time, thereby resulting in convergence failure.

Mesh rezoning method (*h*-adaptive mesh-to-mesh solution mapping) is indispensable.

Mold

250nn

50nm

Our First Result in Advance

P. 3

Tokyo Institute of Technology

What we want to do:

- Static
- Implicit
- Large deformation
- Mesh rezoning

Issues

<u>The biggest issue</u> in large deformation mesh rezoning

It is impossible to remesh arbitrary deformed 3D shapes with hexahedral (H8) elements.

We have to use tetrahedral (T4) elements...

However, the *standard* (constant strain) T4 elements easily induce shear and volumetric locking, which leads to inaccurate results.

Conventional Methods

- Higher order elements:
 - Not volumetric locking free; Unstable in contact analysis; No good in large deformation due to intermediate nodes.
- EAS method:
 - X Unstable due to spurious zero-energy modes.
- B-bar, F-bar and selective integration method:
 - X Not applicable to T4 mesh directly.
- F-bar patch method:

X Difficult to construct good patches. Not shear locking free.

- u/p hybrid (mixed) elements:
 - X No sufficient formulation for T4 mesh so far. (There are almost acceptable hybrid elements such as C3D4H of ABAQUS.)
- Smoothed finite element method (S-FEM):

東京正業内貸wn potential (sinでの20159~). It's worth trying Hiering
Distitute of Technology
PL 5

Various Types of S-FEMs

Basic type

- Node-based S-FEM (NS-FEM)
- Face-based S-FEM (FS-FEM)
- Edge-based S-FEM (ES-FEM)

Selective type

- Selective FS/NS-FEM
- Selective ES/NS-FEM_

- X Spurious zero-energy
- X Volumetric Locking
- X Limitation of constitutive model, Pressure oscillation,
 - Corner locking
- Bubble-enhanced or Hat-enhanced type
 - bFS-FEM, hFS-FEM
 - bES-FEM, hES-FEM
- Pressure oscillation, Short-lasting

■ F-bar type
F-barES-FEM

? Unknown potential

Objective

Develop a new S-FEM, F-barES-FEM-T4, by combining <u>F-bar method</u> and <u>ES-FEM-T4</u> for large deformation problems of nearly incompressible solids

Table of Body Contents

- Method: Formulation of F-barES-FEM-T4
- Result: Verification of F-barES-FEM-T4
- □ Summary

<u>Method</u>

Formulation of F-barES-FEM-T4

(F-barES-FEM-T3 in 2D is explained for simplicity.)

Quick Review of F-bar Method

For quadrilateral (Q4) or hexahedral (H8) elements

<u>Algorithm</u>

- 1. Calculate deformation gradient F at the element center, and then make the relative volume change \overline{J} (= det(F)).
- 2. Calculate deformation gradient **F** at each gauss point as usual, and then make F^{iso} (= $F / J^{1/3}$).
- 3. Modify *F* at each gauss point as

$$\overline{F} = \overline{J}^{1/3} F^{iso}$$

4. Use \overline{F} to calculate the stress, nodal force and so on.

F-bar method is used to **avoid volumetric locking** in Q4 or H8 elements. Yet, it **cannot avoid shear locking**.

Quick Review of ES-FEM

For triangular (T3) or tetrahedral (T4) elements.

<u>Algorithm:</u>

- 1. Calculate the deformation gradient *F* at each element as usual.
- 2. Distribute the deformation gradient F to the connecting edges with area weights to make $E^{dge}F$ at each edge.
- 3. Use Edge **F** to calculate the stress, nodal force and so on.

ES-FEM is used to **avoid shear locking** in T3 or T4 elements. Yet, it **cannot avoid volumetric locking**.

- Edge F^{iso} is given by ES-FEM.
- Edge J is given by Cyclic Smoothing (detailed later).
- $E^{dge}\overline{F}$ is calculated in the manner of F-bar method:

 $Edge_{\overline{F}} = Edge_{\overline{I}} \frac{1}{3} Edge_{\overline{F}} \frac{1}{3}$

Outline of F-barES-FEM

Brief Formulation

- 1. Calculate ^{Elem}*J* as usual.
- 2. Smooth ^{Elem} J at nodes and get ^{Node} \tilde{J} .
- 3. Smooth ^{Node} \widetilde{J} at elements and get ^{Elem} \widetilde{J} .
- 4. Repeat 2. and 3. as necessary (*c* times).

Cyclic Smoothing of J

- 5. Smooth Elem $\widetilde{\widetilde{J}}$ at edges to make $\operatorname{Edge} \overline{J}$.
- 6. Combine $E^{dge}\overline{J}$ and $E^{dge}F^{iso}$ of ES-FEM as $E^{dge}\overline{F} = E^{dge}\overline{J}^{1/3} E^{dge}F^{iso}$.

Hereafter, F-barES-FEM-T4 with *c*-time cyclic smoothing is called "F-barES-FEM-T4(*c*)".

<u>Result</u>

Verification of F-barES-FEM-T4

(Analyses without mesh rezoning are presented for pure verification.)

#1: Bending of a Cantilever

<u>Outline</u>

Neo-Hookean hyperelastic material

$$[T] = 2C_{10} \frac{\text{Dev}(\overline{B})}{J} + \frac{2}{D_1} (J-1)[I]$$

with a constant C_{10} (=1 GPa) and various D_1 s so that the initial Poisson's ratios are 0.49 and 0.499.

- Two types of tetra meshes: structured and unstructured.
- Compared to ABAQUS C3D4H (1st-order hybrid tetrahedral element).

P. 15

Pursuina Excellence

P. 17

Pursuina Excellence

Tokyo Institute of Technology

P. 18

Pursuing Excellence

Tokyo Institute of Technology

#2: Compression of a Block

- Arruda-Boyce hyperelastic material ($v_{ini} = 0.499$).
- Applying pressure on ¼ of the top face.
- Compared to ABAQUS C3D4H with the same unstructured tetra mesh.

#2: Compression of a Block

Pressure Distribution

#2: Compression of a Block

Pressure Distribution

#3: Compression of 1/8 Cylinder

• Neo-Hookean hyperelastic material ($v_{ini} = 0.499$).

- Enforced displacement is applied to the top surface.
- Compared to ABAQUS C3D4H with the same unstructured tetra mesh.

#3: Compression of 1/8 Cylinder Pressure Distribution

F-barES-FEM-T4 with a sufficient cyclic smoothing also resolves the corner locking issue.

Characteristics of F-barES-FEM-T4 Benefits

- ✓ Locking-free with tetra meshes.
- No increase in DOF; No need of static condensation; Easy extension to dynamic explicit analysis.
- ✓ No difficulty in contact analysis.
- Adjustable smoothing level by changing the number of cyclic smoothings (c).
- Suppression of pressure oscillation in nearly incompressible materials.

In point of accuracy, F-barES-FEM-T4 is excellent!!

<u>Characteristics of F-barES-FEM-T4</u> <u>Drawbacks</u>

- Blur of high-frequency pressure distribution. (The impact of blur seem to be not significant.)
- \checkmark Increase in bandwidth of the exact tangent stiffness [K]. In case of standard unstructured T4 meshes,

Method	Approx. Bandwidth	Approx. Ratio
Standard FEM-T4	40	1
F-barES-FEM(1)	390	x10
F-barES-FEM(2)	860	x20
F-barES-FEM(3)	1580	×40
F-barES-FEM(4)	2600	x65

In point of speed, F-barES-FEM-T4 needs some improvements. e.g.) finding a good sparse approximation of [*K*] for iterative matrix solvers.

<u>Summary</u>

Summary

- A new FE formulation named "F-barES-FEM-T4" is proposed.
- F-barES-FEM-T4 combines the <u>F-bar method</u> and <u>ES-FEM-T4</u>.
- Owing to the cyclic smoothing, F-barES-FEM-T4 is locking-free and also pressure oscillation-free with no increase in DOF.
- Only one drawback of F-barES-FEM-T4 is the decrease of calculation speed due to the increase in bandwidth of [K], which is our future work to solve.

Thank you for your kind attention!

Appendix

Characteristics of FEM-T4s

	Shear & Volumetric Locking	Zero- Energy Mode	Dev/Vol Coupled Material	Pressure Oscillation	Corner Locking	Severe Strain
Standard FEM-T4	X	\checkmark	\checkmark	X	X	\checkmark
ABAQUS C3D4H	\checkmark	\checkmark	\checkmark	X	X	\checkmark
Selective S-FEM-T4	\checkmark	\checkmark	X	X	X	\checkmark
bES-FEM-T4 hES-FEM-T4	\checkmark	\checkmark	\checkmark	X	X	X
F-bar ES-FEM-T4	\checkmark	\checkmark	\checkmark	√ *	✓*	\checkmark

*) when the num. of cyclic smoothings is sufficiently large.

#3: Compression of 1/8 Cylinder

<u>Result</u> <u>of F-bar</u> <u>ES-FEM(2)</u>

50% nominal compression

Smooth Mises stress distribution is obtained except just around the rim.

Mises_Stress (Pa)

0e+00 7e+7 1.4e+8 2e+08

▶ 東京工業大学 Tokyo Institute of Technology

