Performance Evaluation of Various Smoothed Finite Element Methods with Tetrahedral Elements in Large Deformation Dynamic Analysis

> <u>Ryoya IIDA</u>, Yuki ONISHI, Kenji AMAYA Tokyo Institute of Technology, Japan

Goal and Requirements

<u>Goal</u>

To analyze large deformation dynamic problems for rubber-like materials

For such analysis, these 3 properties are required.

- (1)Being applied to 4-noded Tet (T4) elements
- (2) Stability even in Nearly incompressible materials
- (3)Being directly applied to **Explicit Dynamics**

Requirements (1 of 3): T4 elements

Arbitrary shapes cannot be meshed into good-quality Hex elements automatically.

Intermediate nodes cause bad-accuracy

in Large deformation problem.

First-order Tet elements (T4) are preferred for such analysis.

Requirements (2 of 3): Stability for rubber-like materials

In FE analysis for rubber-like materials, Pressure oscillation & Locking easily arise.

Requirements (3 of 3): Explicit dynamics

- 2 types of time integration scheme
- 1. Implicit is suitable for long-term problems
- 2. Explicit is suitable for short-term problems

- u/p hybrid formulations cannot be easily applied to explicit dynamics.
- General methods of explicit dynamics for rubber like materials have not been established !
- The advantage of S-FEM is to be directly applied to explicit dynamics

Objective

<u>Objective</u>

To evaluate the performance of competitive **S-FEMs**

- Selective ES/NS-FEM
- F-barES-FEM

in explicit dynamics for nearly incompressible materials.

Table of Body Contents

- Methods: Quick introduction of S-FEMs
- Results & Discussion: A few verification analyses
- Summary

Methods Selective ES/NS-FEM F-barES-FEM

Quick review of S-FEM

Standard FEM

Smoothed-FEM (S-FEM)

ES-FEM sums up each *Edge* values.

 High accuracy in <u>isovolumetric part</u> without shear locking

Nodal forces are calculated by summing up of each elements'

NS-FEM sums up each *Node* values.

 High accuracy in <u>volumetric part</u> with little pressure oscillation

Cauchy stress tensor *T* is derived as

$T = T^{\mathrm{dev}} + T^{\mathrm{hyd}}$

Selective ES/NS-FEM (2 of 2)

This formulation is designed to have 3 advantages.

F-barES-FEM (1 of 3)

Deformation gradient of each edge, \overline{F} is derived as $\overline{F} = \widetilde{F}^{iso} \cdot \overline{F}^{vol}$

F-barES-FEM (2 of 3)

Each part of \overline{F} is calculated as

$$\overline{F} = \widetilde{F}^{\text{iso}} \cdot \overline{F}^{\text{vol}}$$

Isovolumetric part

Smoothing the value of adjacent elements.

The same manner as ES-FEM

Volumetric part

(1)Calculating node's value by smoothing the value of adjacent elements
(2)Calculating elements' value by smoothing the value of adjacent nodes
(3)Repeating (1) and (2) a few times

F-barES-FEM (3 of 3)

This formulation is designed to have 3 advantages.

3. Volumetric locking free with the aid of F-bar method

Characteristics of S-FEMs

Both of S-FEMs have disadvantages...

Equation to solve

Equation of Motion

$$[M]{\ddot{u}} = {f^{\text{ext}}} - {f^{\text{int}}},$$

Internal force vector is calculated as

Selective ES/NS-FEM

$$f^{\text{IIIC}} = \sum_{\text{Edge}} \begin{bmatrix} B^{\text{Edge}} \\ T \end{bmatrix} V \text{ in as}$$

the same fashion s F-bar method

B-matrix of ES-FEM

Stress derived from \overline{F}

Result & Discussion

Bending of a cantilever

- Dynamic explicit analysis.
- Neo-Hookean material
 Initial Young's modulus: 6.0
 Initial Poisson's ratio: 0.4
 Density: 100

6.0 MPa, <mark>0.499</mark>, 10000 kg/m³.

Compare the results of S-FEMs with Selective H8 (ABAQUS/Explicit C3D8) elements.

Result of Standard T4 elements

<u>at *t* = 1.5 s</u>

The result of standard T4 elements is useless...

ICCM2016

P. 18

Time history of deformed shapes

Sign of Pressure

- All of S-FEMs are locking free.
- F-barES-FEM shows good result in earlier stage but gets worse in later stage.
- Selective ES/NS-FEM and NS-FEM cannot suppress pressure oscillation...

Deformed shapes and pressure distributions

<u>at t = 1.5 s</u>

Selective ES/NS-FEM and **NS-FEM** cannot suppress pressure oscillation due to the insufficient smoothing.

Deformed shapes and pressure distributions

F-barES-FEM(2) is comparable to Selective H8 element!

Time history of displacement

NS-FEM shows slightly soft result.

東京工業

Tokyo Institute of Technology

 $\overline{\mathbf{x}}$

Selective ES/NS-FEM and F-barES-FEM agree with the reference.

ICCM2016

P. 22

ΤΟΚΥΟ ΤΕCΗ

Pursuina Excellence

Time history of total energy

 F-barES-FEM causes energy divergences in earlier stage...
 Increasing the number of smoothings suppresses the speed of divergence.

Natural Modes of $\frac{1}{4}$ Cylinder

- Iron part: $E_{ini} = 200 \text{ GPa}$, $v_{ini} = 0.3$, $\rho = 7800 \text{ kg/m}^3$, Elastic, **No cyclic smoothing.**
- Rubber part: $E_{ini} = 6$ MPa, $v_{ini} = 0.499$, $\rho = 920$ kg/m³, Elastic, **1 or 2 cycles of smoothing.**
- Compare S-FEMs with ABAQUS C3D4 and C3D8.

Natural frequencies of each mode

NS-FEM shows bad results due to spurious low-energy modes.

Selective ES/NS-FEM and F-barES-FEM agree with the reference.

1st mode shapes

1st mode shapes also agree with the reference solutions.

11th mode shapes

ABAQUS C3D8 (**Reference**)

F-barES-FEM(2)

NS-FEM spurious low-energy mode

NS-FEM shows spurious low-energy mode!

Distributions of natural frequencies of F-barES-FEM

Some natural frequencies have small imaginary part...

Increasing the number of smoothings makes the frequencies close to real numbers.

Cause of energy divergence Due to the adoption of F-bar method, the stiffness matrix [K] becomes asymmetric.

Equation of Motion: $[M]{\ddot{x}} + [K]{x} = {f^{ext}}$

asymmetric

- Asymmetric stiffness matrix gives rise to imaginary part of natural frequencies and instability in dynamic problem.
- As shown before, increasing the number of smoothings suppress the energy divergence speed.

F-barES-FEM is restricted to short-term analysis (such as impact analysis) with a sufficient number of smoothings.

Swinging of Bunny Ears

- Iron ears: $E_{ini} = 200 \text{ GPa}$, $\nu_{ini} = 0.3$, $\rho = 7800 \text{ kg/m}^3$, Neo-Hookean, **No cyclic smoothing.**
- Rubber body: $E_{ini} = 6$ MPa, $v_{ini} = 0.49$, $\rho = 920$ kg/m³, Neo-Hookean, **1 cycle of smoothing.**
- Compared to ABAQUS/Explicit C3D4. No Hex mesh available!

Time histories of deformed shapes

Only F-barES-FEM seems to be representing not pressure oscillations but pressure waves.

Deformed shapes and sign of pressure

In an early stage

Selective ES/NS-FEM

F-barES-FEM

F-barES-FEM represents pressure waves correctly!

ICCM2016

P. 32

Deformed shapes and pressure distributions

NS-FEM shows strange shapes in large deformed part

ICCM2016 P. 33____

Characteristics of S-FEMs are summarized like them.

Selective ES/NS-FEM

- Dynamic: with little pressure oscillation, temporary stable.
- Modal : high accuracy
- Constitutive equations are restricted.

F-barES-FEM

- Dynamic: with no pressure oscillation, temporary unstable.
- Modal : high accuracy, imaginary part of natural frequencies.
- It is restricted to short-term analysis.

Thank you for your kind attention.

Appendix

Cantilever Bending Analysis

Small deformation static analysis
 Compare B-barES-FEM with ABAQUS C3D20H

ICCM2016

Propagation of 1D pressure wave

<u>Outline</u>

- Small deformation analysis.
- Linear elastic material, Young's modulus: 200 GPa, Poisson's ratio: 0.0,
 - Density: 8000 kg/m³.

Results of F-barES-FEM(0), (1), (2), and (3) are compared to the analysical solution.

<u>Propagation of 1D pressure wave</u> <u>Results</u>

ICCM2016

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

Velocity Verlet Method

<u>Algorithm</u>

1. Calculate the next displacement $\{u_{n+1}\}$ as

$$\{u_{n+1}\} = \{u_n\} + \{\dot{u}_n\}\Delta t + \frac{1}{2}\{\ddot{u}_n\}\Delta t^2.$$

2. Calculate the next acceleration $\{\ddot{u}_{n+1}\}$ as

$$\{\ddot{u}_{n+1}\} = [M^{-1}](\{f^{\text{ext}}\} - \{f^{\text{int}}(u_{n+1})\}).$$

3. Calculate the next velocity $\{\dot{u}_{n+1}\}$ as $\{\dot{u}_{n+1}\} = \{\dot{u}_n\} + \{\ddot{u}_{n+1}\}\Delta t$

<u>Characteristics</u>

- 2nd order symplectic scheme in time.
- Less energy divergence.

Cause of energy divergence Due to the adoption of F-bar method, the stiffness matrix [K] becomes asymmetric and thus the dynamic system turns to unstable.

Equation of natural vibration, $[M]{\ddot{u}} + [K]{u} = {0},$ derives an eigen equation, $([M]^{-1}[K])\{u\} = \omega^2 \{u\},\$ which has asymmetric left-hand side matrix.

 \Rightarrow Some of eigen frequencies could be complex numbers.

 \Rightarrow When an angular frequency $\omega_k = a + ib \ (b > 0)$, the time variation of the kth mode is $\{u(t)\} = \operatorname{Re}[\{u_k\}\exp(-\mathrm{i}\omega_k t)]$

 $= \operatorname{Re}[\{u_k\}\exp(-iat)\exp(bt)]$

Divergent term!

Deformed shapes and sign of pressure

ABAQUS/Explicit C3D4 (Standard T4 element)

It should be noted that a presence of rubber spoils over all accuracy of the analysis with Standard T4 elements.

A rubber parts is a "bad apple" when Standard T4 elements are used.

