Performance Evaluation of Edge-Based Smoothed Finite Element Method for 4-node Tetrahedral Meshes on Electrodeposition Simulation

<u>Kai KITAMURA⁽¹⁾, Yuki ONISHI⁽¹⁾, Takeshi KASHIYAMA⁽²⁾,</u> Kenji AMAYA⁽¹⁾

(1) Tokyo Institute of Technology (Japan)(2) SUZUKI MOTOR CORPORATION (Japan)

What is electrodeposition (ED) ?

- Most widely-used basecoat methods for car bodies.
- Making coated film by applying direct electric current in a paint pool.
- Relatively good at making uniform film thickness but not satisfactory uniform in actual production lines.
- ED simulator is necessary for the optimization of carbody design and coating conditions in actual lines.

Photos of ED process line

1. dipping and deposition process

2. water rinse process

We focus on this process.

ICCM2019

P. 3

Mechanism of Electrodeposition

- Positively charged paint ions are attracted to the cathode.
- Paint ions lose their electrical charge and are aggregated into paint particles.
- Some of the paint particles diffuse and dissolve.

What is ED Simulation ?

ED simulation provides film thickness, surface potential, surface current density and so on.

How to Develop an ED Simulator

- 1. Experiments at lab in various coating conditions.
- 2. Identification of ED boundary model and its parameters.
- 3. Implementation to a FE code.

On the analogy of solid mechanics, Step 1: material tests with MTS, Step 2: identification of elastoplastic model.

ED simulation for actual lines

Issues in Meshing (1)

X It is difficult to discretize complex shapes such as car bodies with **hexahedral meshes**.

→ We have to use **tetrahedral meshes** in ED simulation.
However...

Accuracy of the standard FEM-T4 is insufficient in complex shapes.

Issues in Meshing (2)

X 10-node tetrahedral (T10) **mesh without kink** generally requires more large number of nodes than T4 mesh.

For the same shape representation, T10 mesh without kink leads to massive increase in DOF.

Issues in Meshing (2 Cont.)

X 10-node tetrahedral (T10) mesh with kink causes severe accuracy loss.

T10 mesh with kink does not increase DOF but induces severe accuracy loss.

Motivation

Hexahedral elements:

- X It is difficult to discretize complex shapes.
- T10 elements without kink:
 - X It leads to massive increase in DOF.
- T10 elements with kink:
 - X It causes severe accuracy loss.
- \rightarrow We want to realize high accuracy analysis with T4 mesh.

ES-FEM-T4 could be a solution to these issues.

Development of ED simulator using ES-FEM-T4 and its performance evaluation by comparing with FEM-T4.

Table of body contents:

- 1. Outline of ED Simulation
- 2. Formulation of ES-FEM for ED Simulation
- 3. Analysis Results

Outline of ED Simulation

Fundamental Equations

<u>Governing equation</u>

The electrostatic Laplace equation $\nabla^2 \phi = 0$, in the paint pool domain

Boundary conditions (BCs)

- 1. Insulation BC
- 2. Anodic (Electrode surface) BC
- 3. Cathodic (Carbody surface) BC

ED boundary models are identified with experimental data at a laboratory.

Solving the Laplace equation for potential, the current density distribution on a carbody is determined and then the film thickness distribution is time-evolutionally calculated.

Two Complexities of ED Phenomena

Two nonlinearities in ED boundary model

Our ED boundary model consists of 2 sub-models:

1. Film resistance model

Film resistance *R* is NOT linear to film thickness *h*: $R \neq \alpha h$

R: resistance, α : const., *h*: film thickness.

2. Film growth model

Film growth rate \dot{h} is NOT linear to current density *j*: $\dot{h} \neq \beta j$

 \dot{h} : film growth rate, β : const., *j*: current density.

Procedure to Identify Film Resistance Model

Procedure to Identify Film Growth Model

Formulation of ES-FEM for ED Simulation

Outline of ES-FEM

What is ES-FEM-T4?

- A kind of strain smoothing method.
- Using element edges as Gauss points.
- Robust against element skew.
- Super-linear mesh convergence rate with T4 mesh.

Outline of ES-FEM

<u>Short edges</u>

- When meshing complex shape, the generation of short edges is inevitable.
- Short edges lead to accuracy loss in standard FEM-T4.

ES-FEM can suppress the accuracy loss by smoothing.

Analysis Results

4-Plate BOX Simulation

<u>Outline</u>

- Imitating a bag-like structure such as side sill in a carbody.
- Accuracy on the innermost surface (leftmost plate surface) is the most important; i.e., "maximize the minimum".
- Film thickness is calculated with 4 different mesh seed sizes and compared between FEM-T4 and ES-FEM-T4.

4-Plate BOX Simulation

Overview <u>of</u> Meshes

3.2 mm Mesh Seed Size (31k T4 elem.)

4-Plate BOX Simulation Film Thickness of A-Plate (outermost surface)

Meanwhile, ES-FEM (solid lines) results have no such errors.

★ 東京工業大学 Tokyo Institute of Technology

4-Plate BOX Simulation Film Thickness of G-Plate (innermost surface) 10 FEM, 3.2 mm Film Thickness, h (µm) FEM, 1.6 mm FEM, 0.8 mm FEM, 0.4 mm 5

- ES-FEM, 3.2 mm
- ES-FEM, 1.6 mm
- ES-FEM, 0.8 mm
- ES-FEM, 0.4 mm

120 150 180 210 240 270 300 30 60 9() Mesh seed size Time, t(s)

FEM results (dashed lines) have large errors due to mesh coarseness.

Meanwhile, ES-FEM (solid lines) results have no such errors.

0

()

4-Plate BOX Simulation Error of Final Film Thickness on G-Plate

ES-FEM-T4 has far better mesh convergence rate than FEM-T4 !!

Overview of Surface Mesh

13M T4 elements (3M nodes & 18M edges) in total in the pool.

<u>Outer</u> <u>View</u>

There is no mush difference on the outer surfaces.

Big difference appears on the inner surfaces.

Comparison of Computational Costs

Calculation Time

on a PC with Intel i9-9960X using 10 cores

	FEM-T4	ES-FEM-T4
4-P BOX with 3.2 mm mesh	0.02 h	0.02 h
4-P BOX with 1.6 mm mesh	0.04 h	<mark>و ج</mark> 0.05 h
4-P BOX with 0.8 mm mesh	0.45 h 🥱	3 ⁵⁰ 0.45 h
4-P BOX with 0.4 mm mesh	9.5 h	9.0 h
Carbody	67 h	125 h

There is no big difference in calculation time although the accuracy of ES-FEM-T4 is much better.

Summary

<u>Conclusion</u>

- ES-FEM-T4 was applied to ED simulations.
- High accuracy of ES-FEM-T4 because of its superlinear mesh convergence rate was confirmed in comparison to the poor accuracy of FEM-T4.

<u>Future Works</u>

- Validation of the ED models on the actual manufacturing lines.
- Calculation speed-up with distributed memory parallelization.

Thank you for your kind attention.

Appendix

ED Boundary Models

Film Resistance Model

- > It represents the relation between h, $\Delta \phi_{cat}$ and j_{cat} .
- Used to decide film resistance.
- Flow rate dependency is considered.

$$j_{cat}(\Delta\phi_{cat},h) = \begin{cases} c_1(h)\Delta\phi_{cat} & : \text{With stirring} \\ c_1(h)\left(e^{c_2(h)\Delta\phi_{cat}} - e^{-c_2(h)\Delta\phi_{cat}}\right) : \text{Without stirring} \end{cases}$$

Film Growth Model

> It represents the relation between h, j_{cat} and j_{dif} .

Used to decide film growth rate.

After deposition :
$$j_{\text{difA}}(j_{\text{cat}}, h) = \frac{(j_{\text{cat}} + d_1(h))^{d_2(h)}}{d_1^{d_2(h) - 1} d_2(h)} - \frac{d_1(h)}{d_2(h)}$$

Comparison of Computational Costs

This is because ...

- Most of the calculation time is consumed by the iterative matrix solver (MINRES with Jacobi preconditioner).
- The matrix band width of ES-FEM-T4 is 3 times wider than that of FEM-T4; i.e., ES-FEM-T4 requires 3 times larger memory size.
- However, the iteration count of MINRES in ES-FEM-T4 is about 1/3 or 2/3 of that in FEM-T4 thanks to the well-posedness of the matrix.

Surface Current Density

FEM-T4

ES-FEM-T4

ES-FEM suppresses the spike error of surface current density appearing in FEM.

Surface Current Density

FEM-T4

ES-FEM-T4

ES-FEM suppresses the spike error of surface current density appearing in FEM.

Surface Current Density

FEM-T4

ES-FEM-T4

ES-FEM suppresses the spike error of surface current density appearing in FEM.

