An Optimal Multiple Smoothing Scheme of Selective Cell-based Smoothed Finite Element Methods with 10-node Tetrahedral Elements for Large Deformation of Nearly Incompressible Solids

Yuki ONISHI Tokyo Institute of Technology, Japan

Motivation

What we want to do:

- Solve hyper large deformation analyses accurately and stably.
- Treat complex geometries with tetrahedral meshes.

Consider nearly incompressible materials ($\nu \simeq 0.5$).

ICCM2019

P. 2

- Support **contact** problems.
- Handle auto re-meshing.

okvo Institute of Technolo

Conventional tetrahedral (T4/T10) FE formulations still have issues in accuracy or stability especially in nearly incompressible cases. ■ 2nd or higher order elements: X Volumetric locking. Accuracy loss in large strain due to intermediate nodes. B-bar method, F-bar method, Selective reduced integration: X Not applicable to tetrahedral element directly. ■ F-bar-Patch method: X Difficulty in building good-quality patches. u/p mixed (hybrid) method: (e.g., ABAQUS/Standard C3D4H and C3D10MH) X Pressure checkerboarding, Early convergence failure etc.. F-bar type smoothed FEM (F-barES-FEM-T4): \checkmark Accurate & stable X Hard to implement in FEM codes.

Issues (cont.)

E.g.) Compression of neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

1st order hybrid T4 (C3D4H)

- No volumetric locking
- X Pressure checkerboarding
- X Shear & corner locking

2nd order modified hybrid T10 (C3D10MH)

- ✓ No shear/volumetric locking
- ✗ Early convergence failure
- X Low interpolation accuracy

Pressure

.000e+09

Issues (cont.)

E.g.) Compression of neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

Same mesh as C3D4H case.

Although F-barES-FEM-T4 is accurate and stable, **X** it cannot be implemented in general-purpose FE software due to the adoption of ES-FEM. Also, it cosumes larger memory & CPU costs.

Another approach adopting CS-FEM with T10 element would be effective.

Issues (cont.)

E.g.) Compression of neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

As other S-FEMs, SelectiveCS-FEM-T10 has many varieties in the formulation.

The proposed method last year was **not an optimal formulation yet.**

- ✓ No shar/voluemetric locking
- ✓ Little corner locking
- Little pressure checkerboarding
- Same cost & userbility as T10 elements.

Same mesh

case.

as C3D10MH

ICCM2019 P. 6 ____

Objective

To find out an optimal formulation of SelectiveCS-FEM-T10

Table of Body Contents

- Quick Introduction of ES-FEM, CS-FEM, and Old SelectiveES-FEM-T10
- Formulation of New SelectiveCS-FEM-T10
- Demonstrations of New SelectiveCS-FEM-T10
- Summary

Quick Introduction of ES-FEM, CS-FEM, and Old SelectiveCS-FEM-T10

ICCM2019 P. 8 ____

Brief Review of Edge-based S-FEM (ES-FEM)

- \blacksquare Calculate [B] at each element as usual.
- Distribute [B] to the connecting edges with area weight and build [EdgeB].
- Calculate $F, T, \{f^{\text{int}}\}$ etc. in each edge smoothing domain.

Brief Review of Cell-based S-FEM (CS-FEM)

- Subdivide each element into some sub-element.
- Calculate [^{SubE}B] at each sub-element.
- Calculate $F, T, \{f^{int}\}$ etc. in each sub-element.

Flowchart of Old SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

Pursuing Excellence

Formulation of New SelectiveCS-FEM-T10

Flowchart of New SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

(1) Subdivision into T4 Sub-elements

- Introduce no dummy node (i.e., asymmetric element).
- Subdivide a T10 element into <u>eight T4 sub-elements</u> and calculate their *B*-matrices and strains.

(2) Deviatoric Strain Smoothing

- Perform strain smoothing in the manner of ES-FEM (i.e., average dev. strains of sub-elements at edges).
- Evaluate deviatoric strain and stress at edges.

(3) Volumetric Strain Smoothing

The spatial order of vol. strain should be lower than that of dev. strain to avoid volumetric locking.

Treat the overall mean vol. strain of all sub-elements as the uniform element vol. strain (i.e., same approach as SRI elements).

(4) Combining with SRI Method

Differences between Old and New

- 1. The new formulation has NO dummy node at the center of an element.
 - Fewer sub-elements and edges.
 - Asymmetric element.
- 2. The new formulation has No ES-FEM⁻¹ after ES-FEM.
 - Strain & stress evaluation at edges.
 - No strain smoothing at frame edges.

Intuitively, the lack of element symmetry and frame edge smoothing is not good for accuracy and stability; however, the new formulation is better in fact.

Its reason has not revealed yet.

Demonstration of New SelectiveCS-FEM-T10

Bending of Hyperelastic Cantilever

<u>Outline</u>

- Neo-Hookean hyperelastic material
- Initial Poisson's ratio: $v_0 = 0.49$
- Compared to ABAQUS C3D10MH (modified hybrid T10 element) with the same mesh.

No volumetric locking is observed.

Bending of Hyperelastic Cantilever

Comparison of the pressure dist. at the final state

P. 22

Pursuing Excellence

Tokyo Institute of Technology

Barreling of Hyperelastic Cylinder Outline $u_x = u_y = 0$ 1/8 $u_x = u_y = 0$ 1/8

- Enforce axial displacement on the top face.
- Neo-Hookean body with $v_{ini} = 0.49$.
- Compare results with ABAQUS T10 hybrid elements (C3D10H, C3D10MH, C3D10HS) using the same mesh.

Perfectly Constrained

Barreling of Hyperelastic Cylinder

Convergence failure at 24% compression

Unnaturally oscillating distributions are obtained around the rim.

東京工業大学

Pursuing Excellence

Convergence failure at <u>43%</u> compression

The present element is more robust than ABAQUS C3D10MH

Smooth distributions are obtained except around the rim.

Barreling of Hyperelastic Cylinder <u>Comparison of Mises stress at 24% comp.</u>

All results are similar to each other except around the rim having stress singularity.

Barreling of Hyperelastic Cylinder Comparison of pressure at 24% comp.

All results are similar to each other except around the rim having stress singularity.

Barreling of Hyperelastic Cylinder <u>Comparison of nodal reaction force at 24% comp.</u>

New SelectiveABAQUSABAQUSABAQUSCS-FEM-T10C3D10HC3D10MHC3D10HS

ABAQUS C3D10H and C3D10HS suffer from nodal force oscillation.

Compression of Hyperelastic Block

Arruda-Boyce hyperelastic material ($v_{ini} = 0.499$).

- Applying pressure on ¼ of the top face.
- Compared to ABAQUS C3D10MH with the same unstructured T10 mesh.
 ICCM2019

P. 29

Compression of Hyperelastic Block

Compression of Hyperelastic Block

Less smoothed Mises stress is observed in New SelectiveCS-FEM-T10. Further improvement is still required.

Summary

Summary of SelectiveCS-FEM-T10

<u>Benefits</u>

✓ Accurate

(no locking, no checkerboarding, no force oscillation).

- ✓ Robust (long-lasting in large deformation).
- ✓ No increase in DOF (No static condensation).
- ✓ Same memory & CPU costs as the other T10 elements.
- Implementable to commercial FE codes.

<u>Drawbacks</u>

Very close to practical use!!

X No longer a T4 formulation.

<u>Take-home message</u>

Please consider implementing SelectiveCS-FEM-T10 to your in-house code. It's supremely useful & easy to code!!

Thank you for your kind attention!

