An Optimal Multiple Smoothing Scheme
of Selective Cell-based
Smoothed Finite Element Methods
with 10-node Tetrahedral Elements
for Large Deformation
of Nearly Incompressible Solids

Yuki ONISHI
Tokyo Institute of Technology, Japan

ICCM2019

P.1



Motivation
What we want to do:

B Solve hyper large deformation
analyses accurately and stably.

B Treat complex geometries
with tetrahedral meshes.

B Consider nearly incompressible materials (v ~ 0.5).
B Support contact problems.

B Handle auto re-meshing.
w
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Issues

Conventional tetrahedral (T4/T10) FE formulations
still have Issues Iin accuracy or stability

especially in nearly incompressible cases.

B 2"d or higher order elements:
X Volumetric locking.
Accuracy loss in large strain due to intermediate nodes.
B B-bar method, F-bar method, Selective reduced integration:
X Not applicable to tetrahedral element directly.
B F-bar-Patch method:
X Difficulty in building good-quality patches.
B u/p mixed (hybrid) method:
(e.g., ABAQUS/Standard C3D4H and )
X Pressure checkerboarding, Early convergence failure etc..
B F-bar type smoothed FEM (F-barES-FEM-T4).

v Accurate & stable Hard to implement in FEM codes
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Issues (cont.)
E.g.) Compression of neo-Hookean fiyperelastic body with v;,; = 0.49

Pressure Pressure
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of Nodes is
almost the same.

1st order hybrid T4 (C3D4H) 2" order modified hybrid T10 ( )
v" No volumetric locking v" No shear/volumetric locking

X Pressure checkerboarding X Early convergence failure

X Shear & corner locking X Low interpolation accuracy
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Issues (cont.)

E.g.) Compression of neo-Hookean fyyperelastic body with v;,; = 0.49
| BT Although

s da7ei0s F-barES-FEM-T4 is
+3,500e409

[ accurate and stable,
Fit e
implemented in
general-purpose

FE software

Qo
—
=
17
7
£
[am

Same mesh due to the adoption
2Zse = of ES-FEM.
: === SN | Also, it cosumes
== = i oy larger memory &
CPU costs.

L

F-barES-FEM-T4

v" No shear/volumetric locking Another approach
v No corner locking adopting CS-FEM
v No pressure checkerboarding with T10 element
v' No increase in DOF would be effective.
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Issues (cont.)
E.g.) Compression of neo-Hookean hiyperelastic body with v;,; = 0.49
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i As other S-FEMSs,
SelectiveCS-FEM-T10
has many varieties

Pressure

Same mesh in the formulation.
as
case. The proposed method

last year was
not an optimal
formulation yet.

SelectiveCS-FEM-T10 (Old Ver.)
v" No shar/voluemetric locking
Little corner locking
Little pressure checkerboarding

v' Same cost & userbility as T10 elements.
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Objective

To find out an optimal formulation of

SelectiveCS-FEM-T10

Table of Body Contents

> Quick Introduction of ES-FEM, CS-FEM, and
Old SelectiveES-FEM-T10

» Formulation of New SelectiveCS-FEM-T10

» Demonstrations of New SelectiveCS-FEM-T10

> Summary
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Quick Introduction of
ES-FEM, CS-FEM, and
Old SelectiveCS-FEM-T10
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Brief Review of Edge-based S-FEM (ES-FEM)

B Calculate [B] at each element as usual.
B Distribute [B] to the connecting edges with area weight
and build [ Ed8ep] .

B Calculate F,T,{f"} etc. in each edge smoothing domain.

As if putting
an integration point
on each edge center

ES-FEM can avoid shear locking.
However,
it cannot be implemented in
ordinary FE codes due to the
strain smoothing across
multiple elements...
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Brief Review of Cell-based S-FEM (CS-FEM)

B Subdivide each element into some sub-element.
B Calculate [ >YPEB] at each sub-element.

!
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As if putting Ay

222 2222222222222

: : : A R

/ st N D B

an integration point | A [RUBERT

FEREREYS BEERY e ek ey

32252 P RN A P PP

SIIRERIEIISIARARIENINY

o P A A R A R AR D AR A ]

on each sub-element
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SubCell
| B]
» Implementable as an

;i
Independent finite element.

SubCell -
y » Locking can be avoided
with SRI etc..
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Flowchart of Old SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

ES-FEM-!

%
(1) Subdivision with 4

a dummy node

(4) {ft} and [K]
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Formulation of
New SelectiveCS-FEM-T10
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Flowchart of New SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

65,?‘6“\ No ES-FEM1

(2) Dev. strain smoothing at edges

Q Ry
” %

(1) Subdivision without
dummy nodes

(4) {f ™t} and [K]

(3) Vol. strain smoothing with all sub-elements
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(1) Subdivision into T4 Sub-elements

The shape function
should not be quadratic
In large deformation analyses.

B Introduce no dummy node (i.e., asymmetric element).
B Subdivide a T10 element into eight T4 sub-elements and

calculate their B-matrices and strains.
ICCM2019
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(2) Deviatoric Strain Smoothing

T4 sub-elements cause
shear locking and thus

strain smoothing is
necessary.

From 8 sub-elements

to 25 edges

B Perform strain smoothing in the manner of ES-FEM
(i.e., average dev. strains of sub-elements at edges).

_ Evaluate deviatoric strain and stress at edges.
s ICCM2019
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(3) Volumetric Strain Smoothing

The spatial order of
vol. strain should be
lower than that of
dev. strain to avoid
volumetric locking.

B Treat the overall mean vol. strain of all sub-elements
as the uniform element vol. strain (i.e., same approach as

SRI elements).
=1 el ICCM2019
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(4) Combining with SRI Method

DeV|ator|

® Internal force {fnt}
® Stiffness [K]

B Apply SRI method to combine the Dev. & Vol. parts
and obtain {f"t} and [K].
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Differences between Old and New

1. The new formulation has NO dummy node at the
center of an element.
® Fewer sub-elements and edges.
® Asymmetric element.

2. The new formulation has No ES-FEM-! after ES-FEM.
® Strain & stress evaluation at edges.
® No strain smoothing at frame edges.

Intuitively, the lack of element symmetry and frame
edge smoothing is not good for accuracy and stability;

L however, the new formulation iIs better in fact. y

Its reason has not revealed yet.

ICCM2019

P. 18




Demonstration of
New SelectiveCS-FEM-T10
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Bending of Hyperelastic Cantilever

Qutline
. 10 m
/ 1m
1m Neo-Hookean Hyperelastic Material
sz.yx | Dead Load

B Neo-Hookean hyperelastic material
M [nitial Poisson’s ratio: vy = 0.49

B Compared to (modified hybrid
T10 element) with the same mesh.
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Bending of Hyperelastic Cantilever

Comparison of the deflection disp. at the final state
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New Selective
CS-FEM-T10
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Bending of Hyperelastic Cantilever

Comparison of the pressure dist. at the final state
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New Selective
CS-FEM-T10

Almost the same pressure distributions
with no checkerboarding.
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_Barreling of Hyper'elasﬂc Cylinder

Qutline

im
Enforced
Displacement

2m

. Perfectly
7 Constrained
U=ty =u, =0

B Enforce axial dlsplacement on the top face.
B Neo-Hookean body with v;,; = 0.49.

B Compare results with ABAQUS T10 hybrid elements
(C3D10H, C3D10MH, C3D10HS) using the same mesh.
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Barreling of Hyper'elasﬂc Cylmder'

Anvmawon S Mises Tot :_7_ T]rr_ _______ 0000
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Convergence
failure at 24%
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Unnaturally
oscillating
distributions
are obtained -

'
around k

the rim.
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_Barreling of Hyperelastic Cylinder

Animation t
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Convergence
failure at 43%
compression

The present
element
IS more

robust than g

ICCM2019
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distributions
are obtained

except around
the rim.
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Barreling of Hyperelastic Cyl
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All results are similar to each other
except around the rim having stress singularity.
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Barreling of Hyperelastic Cylinder

Comparison of nodal reaction force at 24% comp.
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ABAQUS C3D10H and C3D10HS
suffer from nodal force oscillation.
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Compression of Hyperelastic Block

Qutline ;
ressure
N ‘\\\ Load
\\
1m

Arruda-Boyce
u,=0 u,=0 - Hyperelastic

| Material

y | x\Afo

B Arruda-Boyce hyperelastic material (v;,; = 0.499).
B Applying pressure on % of the top face.

B Compared to with the same
unstructured T10 mesh.
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Compression of Hyperelastic Block
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Compression of Hyperelastic Block
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Compression of Hyperelastic Block

Misess stress dist. at 0.7 GPa pressre
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Less smoothed Mises stress is observed in New SelectiveCS-FEM-T10.
Further improvement is still required.
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Summary
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Summary of SelectiveCS-FEM-T10
Benefits
v Accurate
(no locking, no checkerboarding, no force oscillation).
v" Robust (long-lasting in large deformation).
v No increase in DOF (No static condensation).
v Same memory & CPU costs as the other T10 elements.

v Implementable to commercial FE codes.
Drawbacks Very close to practical use!!

X No longer a T4 formulation.
Take-home message

Please consider implementing SelectiveCS-FEM-T10 to
your in-house code. It’s supremely useful & easy to code!!

| Thank you for your kind attention! |
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