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Motivation
What we want to do:

◼ Solve hyper large deformation

analyses accurately and stably.

◼ Treat complex geometries 

with tetrahedral meshes.

◼ Consider nearly incompressible materials (𝝂 ≃ 𝟎. 𝟓).

◼ Support contact problems.

◼ Handle auto re-meshing.
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Rubber

Plastic/GlassMetal
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Issues
Conventional tetrahedral (T4/T10) FE formulations

still have issues in accuracy or stability

especially in nearly incompressible cases.
◼ 2nd or higher order elements:

✗ Volumetric locking.

Accuracy loss in large strain due to intermediate nodes.

◼ B-bar method, F-bar method, Selective reduced integration:

✗ Not applicable to tetrahedral element directly.

◼ F-bar-Patch method:

✗ Difficulty in building good-quality patches.

◼ u/p mixed (hybrid) method:

(e.g., ABAQUS/Standard C3D4H and C3D10MH)

✗ Pressure checkerboarding, Early convergence failure etc..

◼ F-bar type smoothed FEM (F-barES-FEM-T4):

✓ Accurate & stable   ✗ Hard to implement in FEM codes.
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Issues (cont.)
E.g.) Compression of neo-Hookean hyperelastic body with 𝜈ini = 0.49
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1st order hybrid T4 (C3D4H)

✓ No volumetric locking

✗ Pressure checkerboarding

✗ Shear & corner locking

2nd order modified hybrid T10 (C3D10MH)

✓ No shear/volumetric locking

✗ Early convergence failure

✗ Low interpolation accuracy

# of Nodes is 

almost the same.

Pressure Pressure



ICCM2019

Issues (cont.)
E.g.) Compression of neo-Hookean hyperelastic body with 𝜈ini = 0.49
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Same mesh

as C3D4H

case.

Pressure Although

F-barES-FEM-T4 is 

accurate and stable,

✗ it cannot be 

implemented in 

general-purpose

FE software 

due to the adoption 

of ES-FEM.

Also, it cosumes

larger memory & 

CPU costs.

Another approach

adopting CS-FEM 

with T10 element 

would be effective.

F-barES-FEM-T4

✓ No shear/volumetric locking

✓ No corner locking

✓ No pressure checkerboarding

✓ No increase in DOF
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Issues (cont.)
E.g.) Compression of neo-Hookean hyperelastic body with 𝜈ini = 0.49
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SelectiveCS-FEM-T10 (Old Ver.)

✓ No shar/voluemetric locking

✓ Little corner locking

✓ Little pressure checkerboarding

✓ Same cost & userbility as T10 elements.

Same mesh

as C3D10MH

case.

As other S-FEMs,

SelectiveCS-FEM-T10

has many varieties

in the formulation.

The proposed method 

last year was 

not an optimal 

formulation yet.
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Objective
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To find out an optimal formulation of 

SelectiveCS-FEM-T10

Table of Body Contents

➢ Quick Introduction of ES-FEM, CS-FEM, and

Old SelectiveES-FEM-T10

➢ Formulation of New SelectiveCS-FEM-T10

➢ Demonstrations of New SelectiveCS-FEM-T10

➢ Summary
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Quick Introduction of
ES-FEM, CS-FEM, and

Old SelectiveCS-FEM-T10
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Brief Review of Edge-based S-FEM (ES-FEM)

◼ Calculate [𝐵] at each element as usual.

◼ Distribute [𝐵] to the connecting edges with area weight

and build [ Edge𝐵] .

◼ Calculate 𝑭, 𝑻, 𝑓int etc. in each edge smoothing domain.
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As if putting 

an integration point

on each edge center

ES-FEM can avoid shear locking.

However,

it cannot be implemented in 

ordinary FE codes due to the 

strain smoothing across

multiple elements...
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Brief Review of Cell-based S-FEM (CS-FEM)

◼ Subdivide each element into some sub-element.

◼ Calculate [ SubE𝐵] at each sub-element.

◼ Calculate 𝑭, 𝑻, 𝑓int etc. in each sub-element.
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➢ Implementable as an 

independent finite element.

➢ Locking can be avoided 

with SRI etc..

As if putting 

an integration point

on each sub-element
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Flowchart of Old SelectiveCS-FEM-T10
Explanation in 2D (6-node triangular element) for simplicity

P. 11

(1) Subdivision with

a dummy node

(2) Dev. strain smoothing with edges and sub-elements

(3) Vol. strain smoothing with all sub-elements

(4) 𝑓int and [𝐾]

ES-FEM-1
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Formulation of
New SelectiveCS-FEM-T10
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Flowchart of New SelectiveCS-FEM-T10
Explanation in 2D (6-node triangular element) for simplicity
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(1) Subdivision without

dummy nodes

(3) Vol. strain smoothing with all sub-elements

(2) Dev. strain smoothing at edges 

(4) 𝑓int and [𝐾]

No ES-FEM-1
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(1) Subdivision into T4 Sub-elements

◼ Introduce no dummy node (i.e., asymmetric element).

◼ Subdivide a T10 element into eight T4 sub-elements and 

calculate their B-matrices and strains.
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The shape function

should not be quadratic

in large deformation analyses.
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(2) Deviatoric Strain Smoothing

◼ Perform strain smoothing in the manner of  ES-FEM

(i.e., average dev. strains of sub-elements at edges). 

◼ Evaluate deviatoric strain and stress at edges.
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From 8 sub-elements

to 25 edges

T4 sub-elements cause

shear locking and thus

strain smoothing is

necessary.
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(3) Volumetric Strain Smoothing

◼ Treat the overall mean vol. strain of all sub-elements 

as the uniform element vol. strain (i.e., same approach as 

SRI elements).
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The spatial order of 

vol. strain should be 

lower than that of 

dev. strain to avoid

volumetric locking.
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(4) Combining with SRI Method

◼ Apply SRI method to combine the Dev. & Vol. parts

and obtain {𝑓int} and [𝐾].
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Deviatoric

Volumetric

⚫Internal force 𝑓int

⚫Stiffness [𝐾]
SRI
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Differences between Old and New
1. The new formulation has NO dummy node at the 

center of an element.

⚫ Fewer sub-elements and edges.

⚫Asymmetric element.

2. The new formulation has No ES-FEM-1 after ES-FEM. 

⚫Strain & stress evaluation at edges.

⚫No strain smoothing at frame edges.

Its reason has not revealed yet.
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Intuitively, the lack of element symmetry and frame 

edge smoothing is not good for accuracy and stability; 

however, the new formulation is better in fact.
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Demonstration of
New SelectiveCS-FEM-T10
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Bending of Hyperelastic Cantilever
Outline

◼ Neo-Hookean hyperelastic material

◼ Initial Poisson’s ratio: 𝜈0 = 0.49

◼ Compared to ABAQUS C3D10MH (modified hybrid 

T10 element) with the same mesh.
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Dead Load
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Bending of Hyperelastic Cantilever
Comparison of the deflection disp. at the final state
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No volumetric locking is observed.

ABAQUS

C3D10MH

New Selective

CS-FEM-T10
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Bending of Hyperelastic Cantilever
Comparison of the pressure dist. at the final state
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Almost the same pressure distributions

with no checkerboarding.

ABAQUS

C3D10MH

New Selective

CS-FEM-T10
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Barreling of Hyperelastic Cylinder
Outline

◼ Enforce axial displacement on the top face.

◼ Neo-Hookean body with 𝜈ini = 0.49．

◼ Compare results with ABAQUS T10 hybrid elements 

(C3D10H, C3D10MH, C3D10HS) using the same mesh.

P. 23



ICCM2019

Barreling of Hyperelastic Cylinder
Animation

of

Mises

stress

(ABAQUS

C3D10MH)
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Convergence

failure at 24%

compression

Unnaturally

oscillating

distributions

are obtained

around

the rim.
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Barreling of Hyperelastic Cylinder
Animation

of

Mises

stress
(New Selective

CS-FEM-T10)
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Convergence

failure at 43%

compression

Smooth

distributions

are obtained

except around

the rim.

The present

element

is more

robust than

ABAQUS

C3D10MH
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Barreling of Hyperelastic Cylinder
Comparison of Mises stress at 24% comp.
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New Selective

CS-FEM-T10

ABAQUS

C3D10MH

ABAQUS

C3D10HS

ABAQUS

C3D10H

All results are similar to each other

except around the rim having stress singularity.
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Barreling of Hyperelastic Cylinder
Comparison of pressure at 24% comp.
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New Selective

CS-FEM-T10

ABAQUS

C3D10MH

ABAQUS

C3D10HS

ABAQUS

C3D10H

All results are similar to each other

except around the rim having stress singularity.
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Barreling of Hyperelastic Cylinder
Comparison of nodal reaction force at 24% comp.
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New Selective

CS-FEM-T10

ABAQUS

C3D10MH

ABAQUS

C3D10HS

ABAQUS

C3D10H

ABAQUS C3D10H and C3D10HS 

suffer from nodal force oscillation.
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Compression of Hyperelastic Block
Outline

◼ Arruda-Boyce hyperelastic material (𝜈ini = 0.499).

◼ Applying pressure on ¼ of the top face.

◼ Compared to ABAQUS C3D10MH with the same 

unstructured T10 mesh.
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Load
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Compression of Hyperelastic Block
Animation

of

pressure

dist.

(ABAQUS

C3D10MH)
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Convergence

failure at

0.71 GPa

pressure
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Compression of Hyperelastic Block
Animation

of

pressure

dist.

(New Selective

CS-FEM-T10)
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Convergence

failure at

1.35 GPa

pressure

The present

element

is more

robust than

ABAQUS

C3D10MH
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Compression of Hyperelastic Block
Misess stress dist. at 0.7 GPa pressre

ABAQUS C3D10MH New SelectiveCS-FEM-T10
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Less smoothed Mises stress is observed in New SelectiveCS-FEM-T10.

Further improvement is still required.
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Summary
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Summary of SelectiveCS-FEM-T10
Benefits

✓ Accurate

(no locking, no checkerboarding, no force oscillation).

✓ Robust (long-lasting in large deformation).

✓ No increase in DOF (No static condensation).

✓ Same memory & CPU costs as the other T10 elements.

✓ Implementable to commercial FE codes.

Drawbacks

✗ No longer a T4 formulation.

Take-home message

Please consider implementing SelectiveCS-FEM-T10 to 

your in-house code. It’s supremely useful & easy to code!!
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Thank you for your kind attention!

Very close to practical use!!


