This is DAY2, Room B, Session 2B-2: "S-FEM".

SelectiveCS-FEM-T10 with Radial-type Mesh Subdivision

Yuki ONISHI Tokyo Institute of Technology, Japan

You can download this slide at http://nas.a.sc.e.titech.ac.jp/yonishi/slide/iccm2020-sfem-t10.pptx

- Smoothed finite element method (S-FEM) is a relatively new FE formulation proposed by Prof. G. R. Liu in 2006.
- S-FEM is one of the **strain smoothing** techniques.
- There are several types of classical S-FEMs depending on the domains of strain smoothing.
- For example in a 2D triangular mesh:

Tokvo Institute of Technolo

P. 2

What are the major pros of S-FEM?

Even when we use 4-node tetrahedral mesh:

- Super-linear mesh convergence rate. (Almost same rate as the 2nd-order element.)
- **2.** Shear locking free with ES-FEM. (Excellent with tetrahedral mesh.)
- **3. Little accuracy loss in skewed meshes.** (No problem with complex geometry.)

S-FEM is a powerful method suitable for practical industrial applications.

How popular is S-FEM? Number of journal papers whose title contains "smoothed finite element":

The attraction of S-FEM is expanding continuously.

P. 5

Tokyo Institute of Technology

Motivation

What we want to do in actuality:

- Solve hyper large deformation analyses accurately and robustly.
- Treat complex geometries with tetrahedral meshes.

- Consider nearly incompressible materials ($\nu \simeq 0.5$).
- Support contact problems.
- Handle auto re-meshing.

Conventional tetrahedral (T4/T10) FE formulations still have issues in accuracy and/or robustness especially in nearly incompressible cases.

- <u>2nd or higher order elements:</u>
 - X Volumetric locking. Accuracy loss in large strain.
- <u>B-bar/F-bar method</u>, <u>Selective reduced integration (SRI)</u>:
 X Not applicable to tetrahedral element directly.
- F-bar-Patch method:
 - X Difficulty in building good-quality patches.
- u/p mixed (hybrid) method (ABAQUS C3D10MH etc.):
 - X Early convergence failure. Accuracy loss in large strain.
- F-bar aided ES-FEM-T4 [Y.Onishi, IJNME, 109 (2017)]:
 - ✓ Accurate & robust X Hard to implement in FEM codes.
- SelectiveCS-FEM-T10 [Y.Onishi, IJCM, 17 (2020)]:

✓ Accurate, robust & easy to implement. X Not yet optimal.

Objective

To find an optimal formulation of SelectiveCS-FEM-T10

for severe large deformation analyses.

Table of Body Contents

- Quick Review of Issues in Conventional Methods
- Formulation of New SelectiveCS-FEM-T10
- Demonstrations of New SelectiveCS-FEM-T10
- Summary

Quick Review of Issues in Conventional Methods

Issues in Barreling Analysis of Rubber Cylinder

Neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

<u>1st order hybrid T4 (C3D4H)</u>

- No volumetric locking
- X Pressure checkerboarding
- X Shear & corner locking

2nd order modified hybrid T10 (C3D10MH)

- No shear/volumetric locking
- Early convergence failure X
- X Low interpolation accuracy

ICCM2020 P. 10

Pressure

917e+09 .000e+09

Issues in Barreling Analysis of Rubber Cylinder

Neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

Same mesh as C3D4H case.

Although F-barES-FEM-T4 is accurate and robust, it cosumes larger memory & CPU costs.

it cannot be implemented in general-purpose FE software due to the adoption of ES-FEM.

Another approach adopting **CS-FEM** with **T10** element would be effective.

Y. Onishi, IJMNE, Vol. 109 (2017).

▶ 東京工業大学 Tokyo Institute of Technology

Issues in Barreling Analysis of Rubber Cylinder

case.

ΤΟΚΥΟ

Formulation of New SelectiveCS-FEM-T10

Concepts of SelectiveCS-FEM-T10

Using T10 element and subdivide it into T4 sub-elements.

 \Rightarrow Overcomes the weak points of intermediate nodes.

Adopting CS-FEM having no strain smoothing across multiple elements.

 \Rightarrow Becomes an independent element of existing FE codes.

• Applying selective reduced integration (SRI). \Rightarrow Overcomes volumetric locking.

P. 14

Brief of Cell-based S-FEM (CS-FEM)

- Subdivide each element into some sub-element.
- Calculate [^{SubE}B] at each sub-element.
- Calculate $F, T, \{f^{int}\}$ etc. in each sub-element.

Flowchart of New SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

<u>Mesh Subdivision Types in 3D</u> <u>Conventional subdivision (30% shrunk mesh)</u>

Each frame edge is owned by only one sub-element. There are 12 sub-elements in total.

Strain on frame edges are NOT smoothed by ES-FEM.

東京工業

Tokyo Institute of Technology

P. 17

<u>Mesh Subdivision Types in 3D</u> <u>New Radial-type subdivision (30% shrunk mesh)</u>

Each frame edge is owned by two sub-elements.

ICCM2020

P. 18

There are 16 sub-elements in total.

Sub-elements have a little larger skewness.

Strain on all edges are smoothed by ES-FEM.

Demonstration of New SelectiveCS-FEM-T10

Static Implicit Bending of Hyperelastic Cantilever

<u>Outline</u>

- Neo-Hookean hyperelastic material
- Initial Poisson's ratio: $v_0 = 0.49$
- Compared to ABAQUS C3D10MH (modified hybrid T10 element) with the same mesh.

Almost the same pressure distributions with no checkerboarding. (No locking of course.)

ICCM2020

P. 22

ΤΟΚΥΟ

TECH

Pursuing Excellence

東京工業大学

Tokyo Institute of Technology

Almost the same Mises stress distributions.

Static Implicit Barreling of Hyperelastic Cylinder

- Enforce axial displacement on the top face.
- Neo-Hookean body with $v_{ini} = 0.49$.
- Compare results with ABAQUS T10 hybrid elements (C3D10H, C3D10MH, C3D10HS) using the same mesh.

Static Implicit Barreling of Hyperelastic Cylinder

Static Implicit Barreling of Hyperelastic Cylinder

<u>Animation</u>

<u>of</u> <u>Mises</u> <u>stress</u> <u>(New Selective</u> <u>CS-FEM-T10)</u>

Convergence failure at <u>47%</u> compression

The present element is more long-lasting (robust) than ABAQUS C3D10MH

東京工業

Tokyo Institute of Technology

Smooth distributions are obtained except around the rim.

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

Static Implicit Barreling of Hyperelastic Cylinder Comparison of Mises stress at 24% comp.

All results are similar to each other except around the rim having stress singularity.

ICCM2020 P. 27

ΤΟΚ

Pursuing Excellenc

Static Implicit Barreling of Hyperelastic Cylinder <u>Comparison of pressure at 24% comp.</u>

All results are similar to each other except around the rim having stress singularity.

ICCM2020 P. 28

ΤΟΚ

Pursuing Excellence

Static Implicit Barreling of Hyperelastic Cylinder Comparison of nodal reaction force at 24% comp.

New Selective	ABAQUS	ABAQUS	ABAQUS
CS-FEM-T10	C3D10H	C3D10MH	C3D10HS

ABAQUS C3D10H and C3D10HS suffer from nodal force oscillation.

- Arruda-Boyce hyperelastic material ($\nu_{ini} = 0.499$).
- Applying pressure on $\frac{1}{4}$ of the top face.
- Compared to ABAQUS C3D10MH with the same unstructured T10 mesh. 東京工業大学 **ICCM2020**

P. 30

C3D10MH

東京工業フ

Tokyo Institute of Technology

+1.000e+09 +8.750e+08 +7.500e+08 +6.250e+08 +5.000e+08 Pressure +3.750e+08 +2.500e+08 -+1.250e+08 -+0.000e+00 -1.250e+08 2.500e+08 -3.750e+08 5.000e+08

<u>Animation of</u>		
<u>Mises stress</u>		
<u>dist.</u>		
<u>(New</u>		
<u>Selective</u>		
<u>CS-FEM-T10</u>		
<u>dist.</u> <u>(New</u> <u>Selective</u> <u>CS-FEM-T10</u>)		

The present element presents Mises stress oscillation.

<u>Misess stress dist. at 0.7 GPa pressre</u>

ABAQUS C3D10MH

New SelectiveCS-FEM-T10

Less smooth Mises stress is observed in SelectiveCS-FEM-T10 compared to C3D10MH. Further improvement is still required.

Characteristics of SelectiveCS-FEM-T10

<u>Benefits</u>

✓ Accurate

(no locking, no checkerboarding, no force oscillation).

- Robust (long-lasting in large deformation).
- ✓ No increase in DOF (No static condensation).
- ✓ Same memory & CPU costs as the other T10 elements.
- Implementable to commercial FE codes (e.g., ABAQUS UEL).

<u>Drawbacks</u>

X Mises stress oscillation in some extreme analyses.

X No longer a T4 formulation.

SelectiveCS-FEM-T10 is competitive with the best ABAQUS T10 element, C3D10MH.

Summary

<u>Summary</u>

- The present method (New SelectiveCS-FEM-T10) is more robust than the conventional one.
- The present method is already very good enough for practical use as compared to ABAQUS Tet elements.
- <u>Take-home message</u>

Please consider implementing New SelectiveCS-FEM-T10 to your in-house code. It's supremely useful & easy to code!!

<u>FYI</u>

You can download my slides at <u>http://www.a.sc.e.titech.ac.jp/~yonishi/</u>

Please contact me on <u>yonishi@a.sc.e.titech.ac.jp</u>.

Thank you for your kind attention!

Appendix

Flowchart of Old SelectiveCS-FEM-T10

Explanation in 2D (6-node triangular element) for simplicity

Differences between Old and New

- 1. The new formulation adopts radial-type mesh subdivision.
 - Strain smoothing on all edges including frame edges.
 - Larger skewness of sub-elements.
- 2. The new formulation has No ES-FEM⁻¹ after ES-FEM.
 - Strain & stress evaluation at edges (NOT at sub-elements).

Discussions

The old formulation is shorter-lasting than the new one probably because of the low-energy modes induced by the multiple smoothing (too much smoothing).

> ICCM2020 P. 41

The new formulation does not need multiple smoothing because any edge is owned by multiple sub-elements. 東京工業

