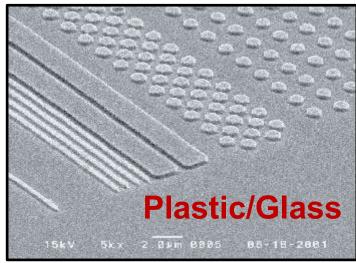
Performance evaluation of

the edge center-based strain smoothing element with selective reduced integration using 4-node tetrahedral meshes $(\underline{\mathsf{EC-SSE-SRI-T4}})$

in nearly incompressible large deformation analyses

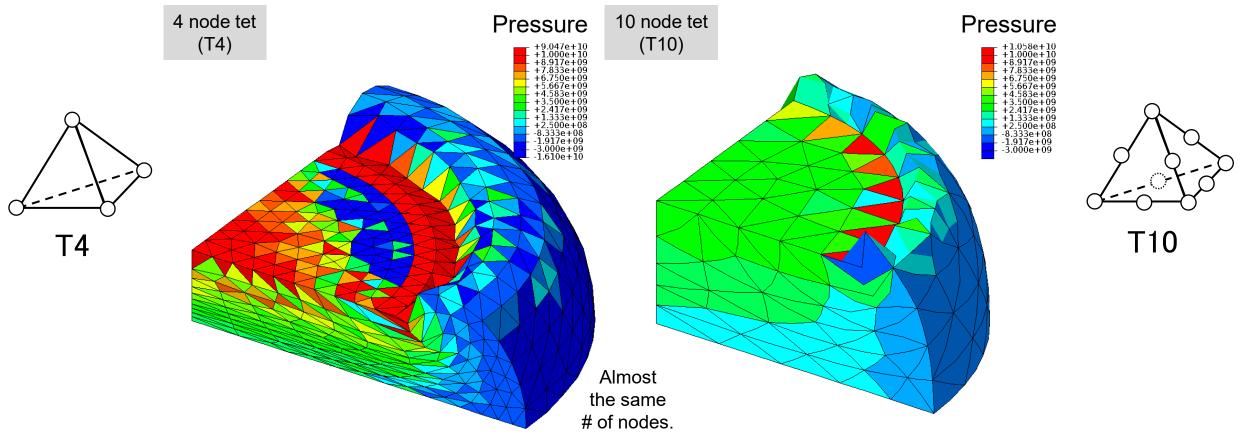
Yuki ONISHI (Tokyo Institute of Technology)

Motivation


What we want to do:

- Solve severe large deformation analyses accurately and robustly.
- Treat complex geometries with **tetrahedral meshes**.

- Consider nearly incompressible materials ($\nu \simeq 0.5$).
- Support **contact** problems.
- Handle auto re-meshing.

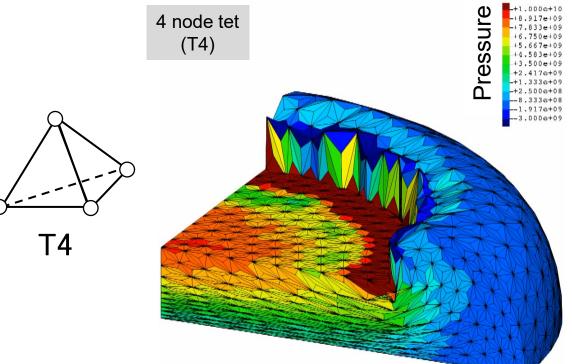


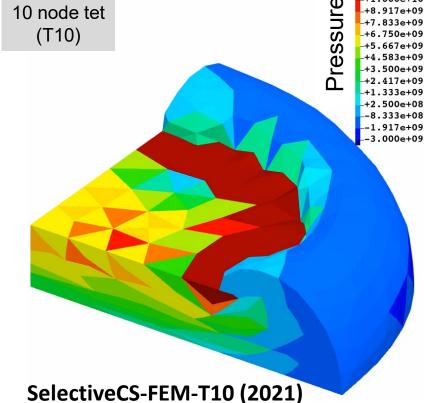
Issues in Conventional FE (ABAQUS)

<u>e.g.</u>) Barreling of Rubber Cylinder Neo-Hookean <u>hyperelastic</u> body with $v_{ini} = 0.49$

ABQUS C3D4H

- ✓ No volumetric locking.
- Pressure checkerboarding.
- Shear locking & Corner locking.


ABAQUS C3D10MH


- ✓ No shear/volumetric locking.
- Short lasting (weak to severe deformation).
- X Low interpolation accuracy.

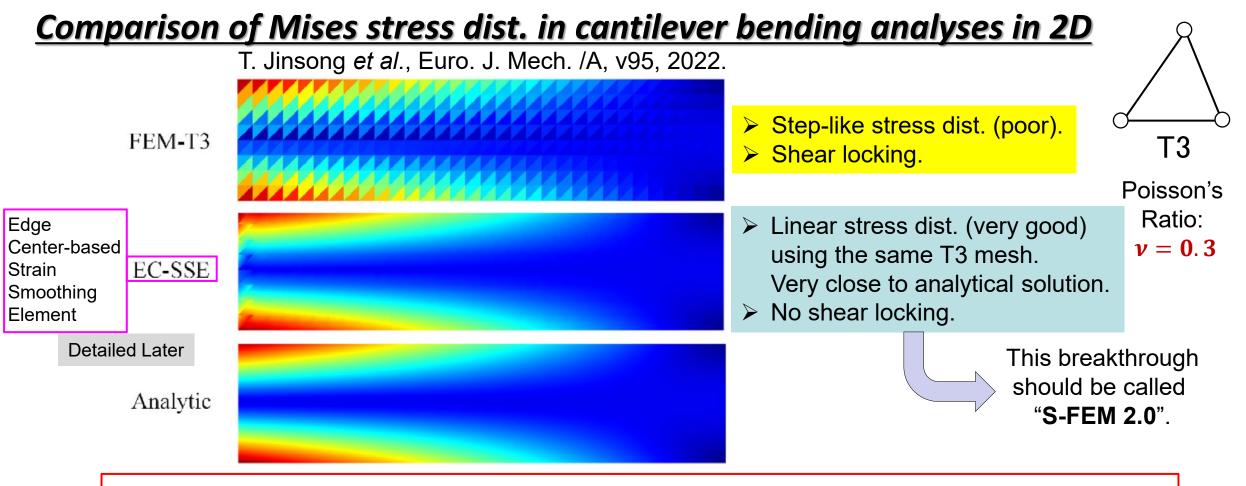
Our Approach using S-FEM

e.g.) Barreling of Rubber Cylinder Neo-Hookean <u>hyperelastic</u> body with $\nu_{\rm ini} = 0.49$

T10

F-barES-FEM-T4 (2017)

- ✓ No shear/volumetric locking.
- More than 10 times Less pressure checkerboarding.
- slower than FEM-T4. Less corner locking. Long lasting.
 - ✓ No oscillation in deviatoric stress.
 - Long CPU time. Incompatible w/ FE.


- No shear/volumetric locking.
- Less pressure checkerboarding.
- Less corner locking. Long lasting.
- Major oscillation in deviatoric stress.
- ✓ Same CPU time. Compatible w/ FE.

Cannot suppress stress oscillation, but no good idea for accuracy improvement...

but no good idea

for speed-up...

Birth of a Next-gen S-FEM, EC-SSE, in 2022

EC-SSE is an excellent formulation for compressible solids;

but when $\nu \simeq 0.5$, EC-SSE has volumetric locking and pressure checkerboarding. Therefore, EC-SSE is NOT directly applicable to nearly incompressible solids.

Objective

Objective

Develop a new S-FEM formulation to extend EC-SSE to nearly incompressible large deformation analysis

Strategy

Use the selective reduced integration (SRI)

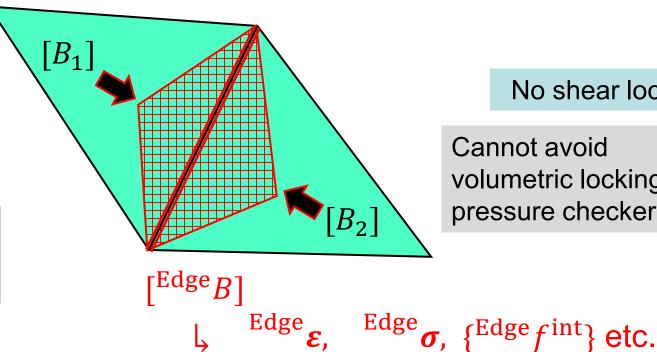
- Use EC-SSE for the deviatoric part,
- > Use NS-FEM for the volumetric part, and
- > Combine them with SRI.

EC-SSE-SRI

Method

Introduction to ES-FEM, NS-FEM, EC-SSE, and EC-SSE-SRI

Brief of ES-FEM


Let us consider a mesh with only two 3-node triangular cells.

■ Make [B] (= dN/dx) at each cell as usual.

- Let me explain in 2D for simplicity
- \blacksquare At each edge, gather [B]s of the connecting cells and average them with area weights to build [Edge B].
- \blacksquare Calculate strain (ε) , stress (σ) and nodal internal force $\{f^{\text{int}}\}$ in each edge smoothing domain with $\lceil E^{\text{dge}}B \rceil$.

As if putting a Gauss point on each edge center

Strain distribution is piecewise constant in each smoothing domain.

No shear locking.

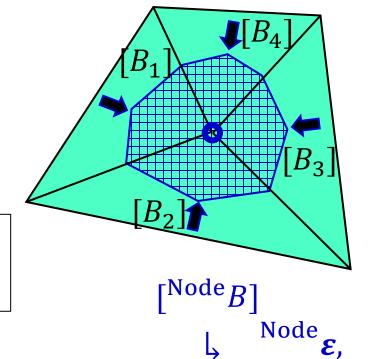
Cannot avoid volumetric locking & pressure checkerboarding.

Brief of NS-FEM

Let us consider a mesh with only four 3-node triangular cells.

■ Make [B] (= dN/dx) at each cell as usual.

Let me explain in 2D for simplicity


■ At each node, gather [B]s of the connecting cells and average them with area weights to build $[{}^{Node}B]$.

 \blacksquare Calculate strain (ε) , stress (σ) and nodal internal force $\{f^{\rm int}\}$ in each nodal smoothing

domain with $\lceil Node B \rceil$.

As if putting a Gauss point on each node center

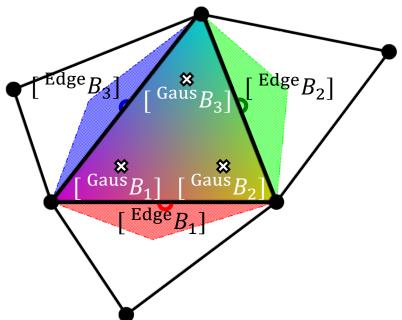
Strain distribution is piecewise constant in each smoothing domain.

No shar/volumetric locking. Less pressure checkerboarding

Cannot avoid spurious low-energy modes.

 $^{\text{Node}}\sigma$, $\{^{\text{Node}}f^{\text{int}}\}$ etc.

Brief of EC-SSE


- Make $\begin{bmatrix} Edge B \end{bmatrix}$ s in the same procedure as ES-FEM.
- Consider each $\begin{bmatrix} Edge B \end{bmatrix}$ is the value at the center of each edge, and assume $\begin{bmatrix} B \end{bmatrix}$ is linearly distributed in each cell.

■ Make three $\begin{bmatrix} Gaus B \end{bmatrix}$ s in each cell as the extrapolation of the three $\begin{bmatrix} Edge B \end{bmatrix}$ s.

■ Calculate $^{Gaus}\varepsilon$, $^{Gaus}\sigma$ and $\{f^{int}\}$ using each $[^{Gaus}B]$ in the same manner as the 2^{nd} -order element.

Conducting strain smoothing twice, the strain/stress are evaluated at each Gauss point.

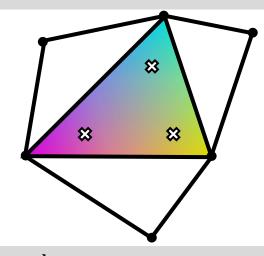
Strain distribution is piecewise-linear in each cell and is continuing at every edge center.

- No shear locking with T3/T4 mesh.
- Fast mesh convergence rate in strain/stress as an 2nd –order element.
- Cannot avoid volumetric locking and pressure checkerboarding

Let me

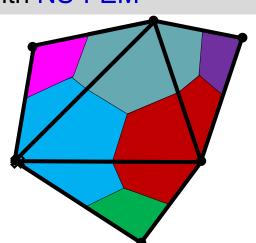
explain in 2D

for simplicity


Brief of EC-SSE-SRI (Our Latest Method)

Apply the selective reduced integration (SRI) to EC-SSE to handle rubber-like solids

(1) Calculate $\varepsilon^{\rm dev}$ at each Gauss point with EC-SSE


Deviatoric

Part

(2) Calculate σ^{dev} at each Gauss point and its contribution to $\{f^{\text{int}}\}$

(3) Calculate ε^{vol} at each node with NS-FEM

Volumetric Part

Let me

explain in 2D

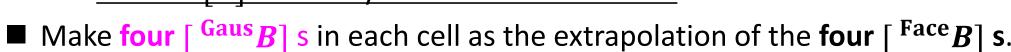
for simplicity

(4) Calculate σ^{hyd} at each node and its contribution to $\{f^{\text{int}}\}$

Deviatoric strain distribution is piecewise-linear in each cell and is

continuing at each edge center.

Selective Reduced Integration (SRI)

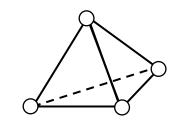

(5) Assemble $\{f^{int}\}$

No shear/volumetric locking. Less pressure checkerboarding.

Brief of EC-SSE-SRI-T4 (in 3D)

[Deviatoric Part]

- Make $\begin{bmatrix} Edge B \end{bmatrix}$ s in the same procedure as ES-FEM.
- Make $\begin{bmatrix} Face B \end{bmatrix}$ s by re-smoothing three $\begin{bmatrix} Edge B \end{bmatrix}$ s per face.
- Consider each [Face B] is the value at the center of each **face**, and assume [B] is linearly distributed in each cell.

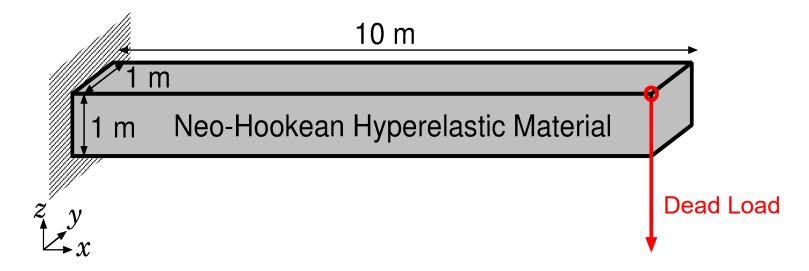

■ Calculate $^{Gaus}\varepsilon_{dev}$, $^{Gaus}\sigma_{dev}$ and $\{f_{dev}^{int}\}$ using each $[^{Gaus}B]$, like the 2^{nd} -order element.

[Volumetric Part]

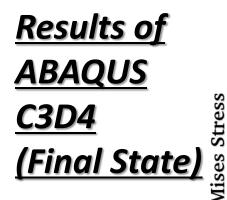
- Make $\begin{bmatrix} Node B \end{bmatrix}$ s in the same procedure as NS-FEM.
- Calculate $^{\text{Node}}\varepsilon_{\text{vol}}$, $^{\text{Node}}\sigma_{\text{hyd}}$ and $\{f_{\text{vol}}^{\text{int}}\}$ using each $[^{\text{Node}}B]$.

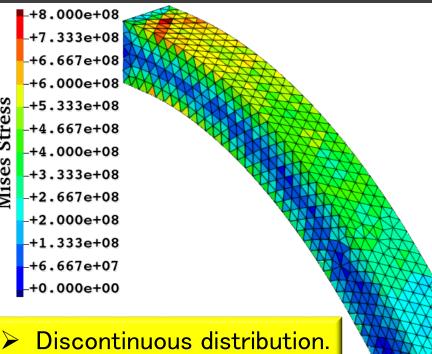
[SRI]

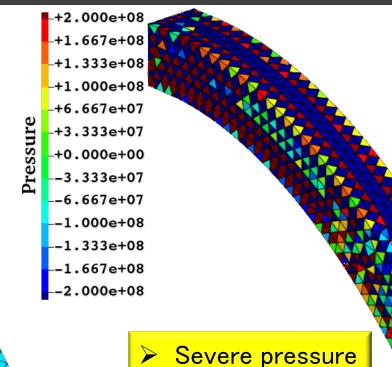
$$\blacksquare \text{ Make } \{f^{\text{int}}\} = \{f^{\text{int}}_{\text{dev}}\} + \{f^{\text{int}}_{\text{vol}}\}.$$


Result & Discussion

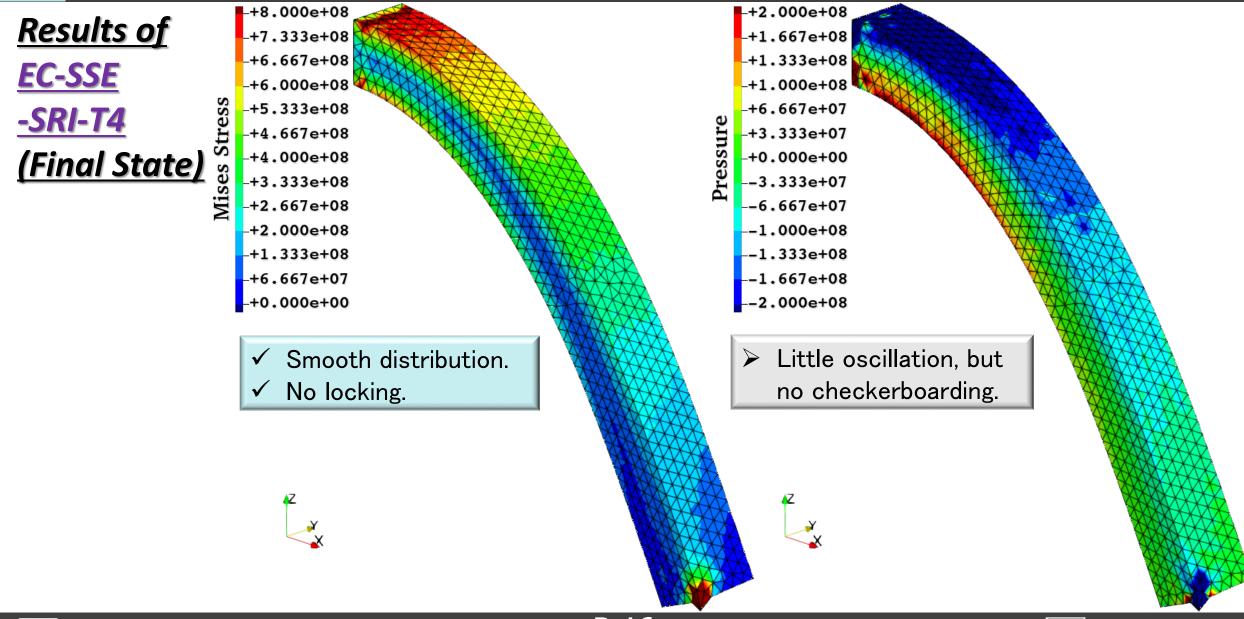
Performance evaluation of EC-SSE-SRI-T4 in 3D and Discussion of CPU Cost


<u>Outline</u>




- 10 x 1 x 1 m cantilever.
- Neo-Hookean hyperelastic material, $E_{\rm ini}=6$ GPa, $v_{\rm ini}=0.49$.
- Dead load applied to the tip node.
- \blacksquare A large deflection analysis with $u_z=-6.5$ m at the final state.
- Compared the results of **ABAQUS C3D4** and EC-SSE-SRI-T4.

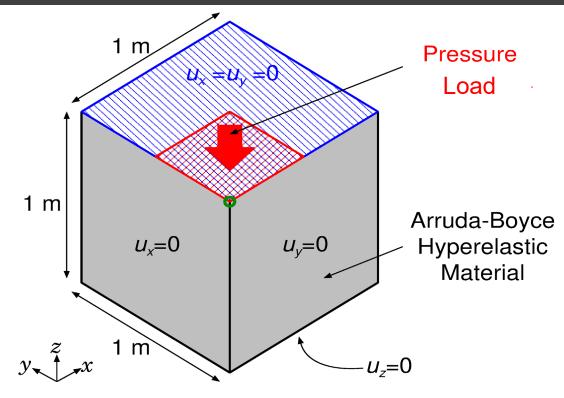
checkerboarding.


ABAQUS dat file:

Volumetric locking. (-15% error in deflection)

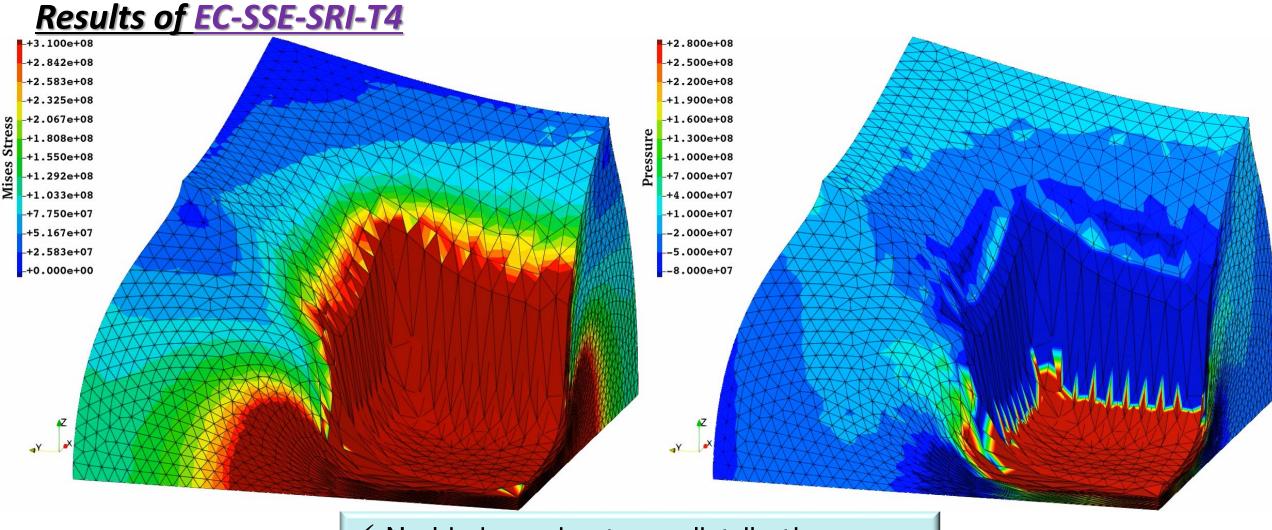
***WARNING: THE INITIAL BULK MODULUS OF 9.93333E+10 EXCEEDS 25 TIMES THE INITIAL SHEAR MODULUS OF 2.00000E+09 (SO THE INITIAL POISSONS RATIO 0.49000 EXCEEDS 0.48) FOR THE HYPERELASTIC MATERIAL NAMED MATERIAL-1. HOWEVER, A HYBRID TYPE ELEMENT IS NOT USED. THIS MAY

CAUSE CONVERGENCE PROBLEMS.



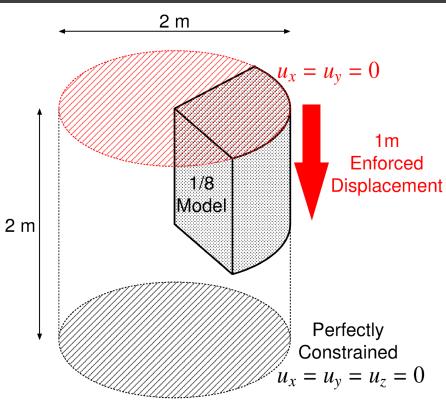
Results of EC-SSE-SRI-T4 with Different v_{ini} s (Final State) _+8.000e+08 -+2.000e+08 -+1.667e+08 _+7.333e+08 Vini _+6.667e+08 -+1.333e+08 -+1.000e+08 _+6.000e+08 -+5.333e+08 -+6.667e+07 _+4.667e+08 🕥 -+3.333e+07 -+4.000e+08 -+0.000e+00 _+3.333e+08 -3.333e+07 -+2.667e+08 -6.667e+07 -+2.000e+08 1.000e+08 _+1.333e+08 1.333e+08 -+6.667e+07 -1.667e+08 _+0.000e+00 -2.000e+08 Major pressure checkerboarding No major in the case of difference in the $\nu_{\rm ini} = 0.499.$ Mises stress Limit of proposed method: distributions. up tp $\nu = 0.49$.

Pressuring of Rubber Block


Outline

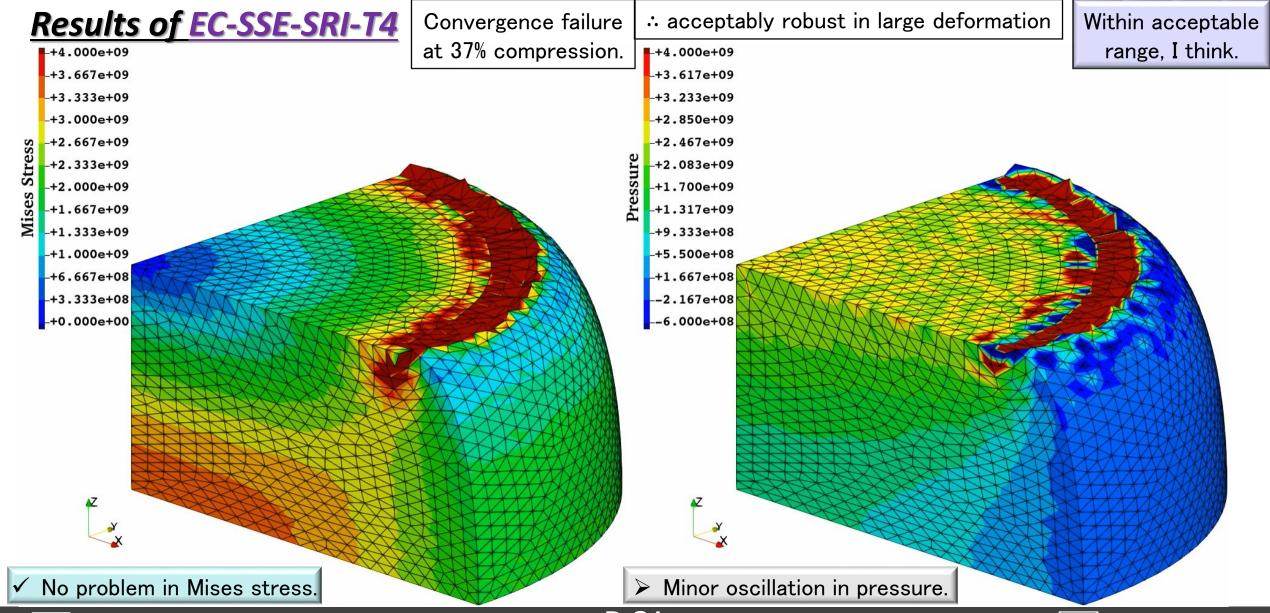
- \blacksquare 1 x 1 x 1 m block.
- \blacksquare Arruda-Boyce hyperelastic material, $E_{\rm ini}=24$ GPa, $\nu_{\rm ini}=0.49$.
- Applying pressure on ¼ of the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

Pressuring of Rubber Block

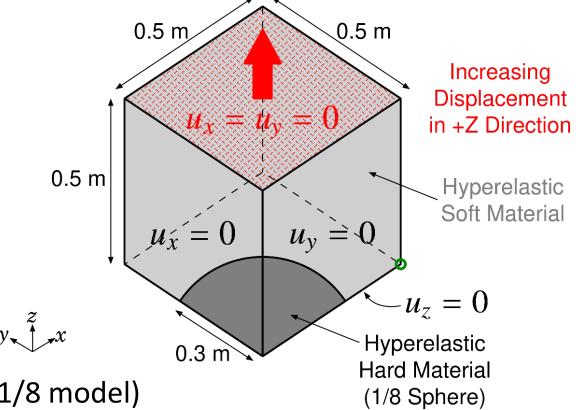


- ✓ No big issue in stress distributions
- ✓ Sufficient large deformation robustness

Barreling of Rubber Cylinder


<u>Outline</u>

- 1 m cylinder in radius and height.
- Neo-Hookean hyperelastic material, $E_{\text{ini}} = 6 \text{ GPa}$, $v_{\text{ini}} = 0.49$.
- Applying enforced compression displacement on the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.



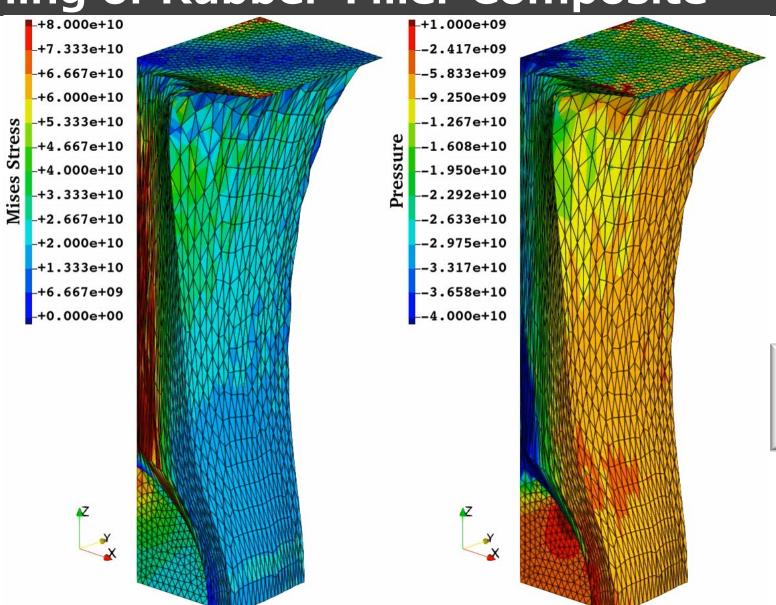
Barreling of Rubber Cylinder

Tensioning of Rubber-Filler Composite

<u>Outline</u>

- 0.5 x 0.5 x 0.5 m cube (1/8 model)
- Rubber: Neo-Hookean hyperelastic material ($E_{\text{ini}} = 6 \text{ GPa}, \nu_{\text{ini}} = 0.49$)
- Iron Filler: Neo-Hookean hyperelastic material ($E_{\rm ini} = 260~{\rm GPa}, \nu_{\rm ini} = 0.3$)
- Applying enforced tensioning displacement on the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

Tensioning of Rubber-Filler Composite


Results of

EC-SSE

-SRI-T4

Convergence
failure
at 221% stretch
∴ sufficiently robust
in large deformation

✓ No issue in Mises stress.

 Minor pressure oscillation only in rubber part.

Within acceptable range, I think.

Discussion on CPU Time of EC-SSE-SRI-T4

- Since the most of CPU time for implicit analyses is spent solving the stiffness equation (i.e., $[K]\{u\} = \{f\}$), the size of [K] matrix (N) directly affects the CPU time.
- EC-SSE-SRI-T4 is a purely displacement-based FE formulation; thus, the matrix size (N) is exactly identical to that of FEM-T4.
- EC-SSE-SRI-T4 conducts strain smoothing across FE cells; thus, the matrix bandwidth of [K] is x6.7 wider than that of FEM-T4.

Formulation	Bandwidth of $[K]$	v.s. FEM-T4 Ratio
FEM-T4	14 nodes x 3 DOF	1
FEM-T10	28 nodes x 3 DOF	2.0
ES-FEM-T4	45 nodes x 3 DOF	3.2
NS-FEM-T4, SelectiveES/NS-FEM	60 nodes x 3 DOF	4.3
EC-SSE-T4, EC-SSE-SRI-T4	94 nodes x 3 DOF	6.7

■ Therefore, as for calculation speed, EC-SSE-SRI-T4 is about x6.7 slower than FEM-T4.

Discussion on CPU Time of EC-SSE-SRI-T4

- Meanwhile, we should remind that
 - FEM-T4 cannot avoid volumetric locking and pressure checkerboarding,
 - FEM-T10 cannot have large deformation robustness (<u>short-lasting</u>),
 no matter how fine the mesh is.
- Therefore, I believe, EC-SSE-SRI-T4 is practically acceptable and worth using, even though the CPU time is 7 times longer than FEM-T4.

What do you think?

Summary

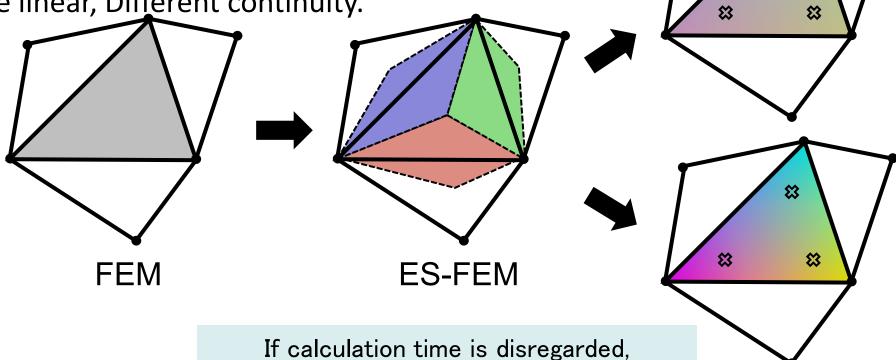
Summary

- A next-gen S-FEM, EC-SSE-T4, was upgraded to EC-SSE-SRI-T4 to handle rubber-like materials.
- The performance of EC-SSE-SRI-T4 in large deformation nearly incompressible analyses is summarized as follows:
 - No shear/volumetric locking.
 - Only minor pressure checkerboarding when $\nu \leq 0.49$.
 - 7 times longer CPU time than FEM-T4 when using the same mesh.
 - ➤ More accurate than conventional T4 elements and SelectiveES/NS-FEM-T4.
 - > More robust (long-lasting) than conventional T10 elements.
- The EC-SSE family would be the standard T4 formulation in the near future.

Thank you for your kind attention!

Appendix

Difference in Formulation


Strain Distribution in each Formulation

■ FEM and ES-FEM:

Piece-wise constant, Different pieces.

■ SSE and EC-SSE:

Piece-wise linear, Different continuity.

EC-SSE is expected to provide highly

accurate strain/stress with a T3/T4 mesh.

Let me explain in 2D for simplicity

EC-SSE

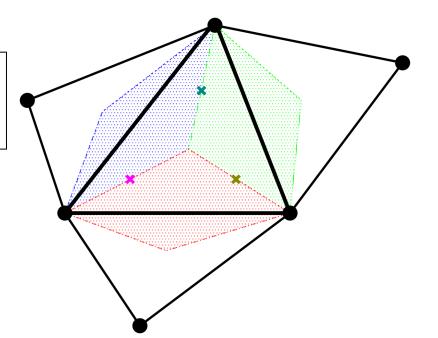
SSE

Brief of SSE

■ Make $\lceil ^{\text{Edge}}B \rceil$ s in the same procedure as ES-FEM.

Let me explain in 2D for simplicity

■ Consider each $[E^{\text{dge}}B]$ represents [B] in its edge smoothing domain, and assume [B] is linearly distributing in each cell.

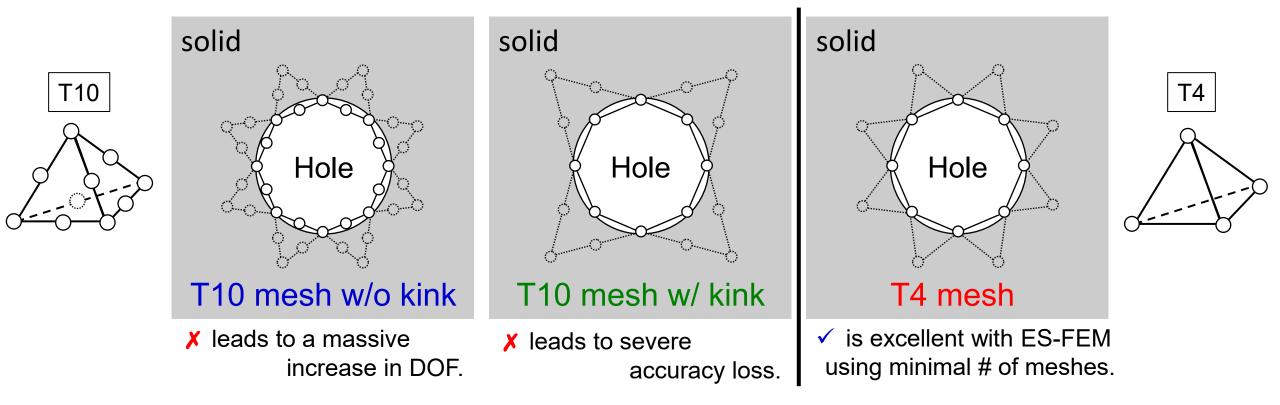

■ Make three $\lceil ^{Gaus}B \rceil$ s in each cell as the average of neighbor two $\lceil ^{Edge}B \rceil$ s.

■ Calculate $^{Gaus}\varepsilon$, $^{Gaus}\sigma$ and $\{f^{int}\}$ using each $\begin{bmatrix} Gaus B \end{bmatrix}$ in the same manner

as the 2nd -order element.

Conducting strain smoothing twice, the strain/stress are evaluated at each Gauss point.

Strain distribution is piecewise-linear in each cell


- No shear locking with T3/T4 mesh.
- Fast mesh convergence rate in strain/stress.
- Cannot avoid volumetric locking and pressure checkerboarding

Why not T10 but T4?

It is because T10 mesh is NOT good for the representation of complex geometries.

For example, surface mesh around a small hole looks like...

Also, the presence of mid-nodes leads to early convergence failure in large deformation. Then, T4 is preferable.