EC-SSE-SRI-T4:

a next-gen smoothed finite element method for nearly incompressible large deformation analysis

Yuki ONISHI (Tokyo Institute of Technology)

Quick Review of Smoothed Finite Element Method (S-FEM)

What is S-FEM?

- Smoothed finite element method (S-FEM) is a relatively new FE formulation proposed in 2006.
- S-FEM is one of the gradient (strain) smoothing techniques.
- There are many kinds of S-FEMs depending on the scheme of smoothing.
- There are a few <u>classical</u> S-FEMs depending on the smoothing domain.

For example, in a 2D triangular mesh:

Each colored area shows the domain for gradient smoothing.

IWACOM-IV 2024

Tokyo Tech

e.g.) Brief of ES-FEM

Let us consider a mesh with only two 3-node triangular cells.

- Calculate [B] (= dN/dx) at each cell as usual.
- Distribute each [B] to the connecting edge with an area weight and build [EdgeB].
- Calculate strain (ε), Cauchy stress (σ) and nodal internal force { f^{int} } in each edge smoothing domain with [$^{\text{Edge}}B$].

Performance of ES-FEM

Cantilever Bending Analysis with Dead Load at the Tip Size:10x1 m, v = 0.3

ES-FEM-T3 gives more accurate stress/strain distributions than the standard FEM-T3 using the same mesh.

P. 5 IWACOM-IV 2024

Performance of ES-FEM

Cantilever Bending Analysis with Dead Load at the Tip Size:10x1 m, v = 0.3

ES-FEM-T3 is shear locking free and thus the mesh convergence rate of displacement/force is much faster than the Standard FEM-T3.

東京工業大学

P. 6 IWACOM-IV 2024

Tokyo Tech

What are the benefits of S-FEM?

- Super-linear mesh convergence rate with T4 mesh. (Almost same rate as 2nd-order elements with T4 mesh.)
- 2. Shear locking free with ES-FEM-T4. (Good accuracy with T4 mesh in solid mechanics.)
- **3. Volumetric locking free with NS-FEM-T4.** (Key technique for rubber-like nearly incompressible solid.)
- **4. Little accuracy loss with skewed meshes.** (No problem with complex geometry or severe deformation.)
- 5. No increase in DOF.

(Purely displacement-based formulation.)

6. Easy to code.

(keeping away from mixed variational formulations.)

S-FEM is a powerful method suitable for practical industrial applications.

T4: 4-node Tetrahedra

G.R. Liu *et al.,* CRC Press

P. 7 IWACOM-IV 2024

What are the drawbacks of S-FEM?

1. Wider bandwidth of stiffness matrix [*K*].

e.g., in case of T3 mesh in 2D,

A node is referred by 6 calls. \Rightarrow connecting with 7 nodes including itself.

A node is referred by 12 edges that referred by 12 cells. \Rightarrow connecting with 13 nodes including itself.

FEM-T3 (Bandwidth: 7)

ES-FEM-T3 (Bandwidth: 13) ∴ about x2 bandwidth.

(In case of T4 mesh in 3D, the bandwidth of [K] is about x3 wider.)

However, this drawback is NOT a major issue because ES-FEM has much faster mesh convergence rate than FEM-T4.

What are the drawbacks of S-FEM?

2. No low-cost formulation to suppress pressure checkerboarding.

e.g., in case of T3 mesh in 2D cantilever bending analysis with $\nu = 0.49$

ES-FEM shows a kind of **pressure checkerboarding** in common with the standard FEM.

3. Hard to implement to the standard FE code.

∵ S-FEM requires stain smoothing across cells.
Therefore, S-FEM formulation cannot be described as an independent element.
But it is OK as long as we develop our own in-house code.

A brand-new code with a novel S-FEM formulation for nearly incompressible solids is still awaited.

How popular is S-FEM?

Tokvo Institute of Technolog

Applications of S-FEM-T4 in Our Lab

Large deformation solid mechanics (still in academic research)

Motivation & Objective of Our Latest Study

Motivation

What we want to do:

- Solve severe large deformation analyses accurately and robustly.
- Treat complex geometries with tetrahedral meshes.

- Consider nearly incompressible materials ($\nu \simeq 0.5$).
- Support **contact** problems.
- Handle **auto re-meshing**.

P. 13 IWACOM-IV 2024

Issues in Conventional FE (ABAQUS)

Our Approach using S-FEM

Tokvo Institute of Technoloa

Why not T10 but T4?

It is because T10 mesh is NOT good for the representation of complex geometries.

For example, surface mesh around a small hole looks like...

Also, the presence of mid-nodes leads to early convergence failure in large deformation.

Then, T4 is preferable for practical analyses with complex geometry.

P. 16

IWACOM-IV 2024

Tokyo Tech

Birth of a Next-gen S-FEM, EC-SSE, in 2022

EC-SSE is an excellent formulation for compressible solids; but when $\nu \simeq 0.5$, EC-SSE has **volumetric locking** and **pressure checkerboarding**. Therefore, EC-SSE is NOT directly applicable to nearly incompressible solids.

IWACOM-IV 2024

Tokvo Institute of Technolog

Tokyo Tech

Objective

<u>Objective</u>

Develop a new S-FEM formulation to extend EC-SSE to nearly incompressible large deformation analysis

<u>Strategy</u>

Use the selective reduced integration (SRI)

- ➤ Use EC-SSE for the deviatoric part,
- ➢ Use NS-FEM for the volumetric part, and

> Combine them with SRI.

EC-SSE-SRI

Method Introduction to ES-FEM, NS-FEM, EC-SSE, and EC-SSE-SRI

Brief of ES-FEM

Let us consider a mesh with only two 3-node triangular cells.

- Make [B] (= dN/dx) at each cell as usual.
- At each edge, gather [B]s of the connecting cells and average them with area weights to build [EdgeB].
- Calculate strain (ε), stress (σ) and nodal internal force {f^{int}} in each edge smoothing domain with [^{Edge}B].

Brief of NS-FEM

Let us consider a mesh with only four 3-node triangular cells.

- Make [B] (= dN/dx) at each cell as usual.
- At each node, gather [B]s of the connecting cells and average them with area weights to build [NodeB].
- Calculate strain (ε), stress (σ) and nodal internal force {f^{int}} in each nodal smoothing domain with [^{Node}B].

Brief of EC-SSE

- Make $\begin{bmatrix} Edge B \end{bmatrix}$ s in the same procedure as ES-FEM.
- Consider each [^{Edge}B] is the value at the center of each edge, and <u>assume [B] is linearly distributed in each cell</u>.
- Make three $[^{Gaus}B]$ s in each cell as the **extrapolation of the three** $[^{Edge}B]$ s.
- Calculate $^{\text{Gaus}}\varepsilon$, $^{\text{Gaus}}\sigma$ and $\{f^{\text{int}}\}$ using each $[^{\text{Gaus}}B]$ in the same manner as the 2nd -order element.

Conducting strain smoothing twice, the strain/stress are evaluated at each Gauss point.

Strain distribution is <u>piecewise-linear in each cell</u> and is <u>continuing at every edge center</u>.

- No shear locking with T3/T4 mesh.
- Fast mesh convergence rate in strain/stress as an 2nd –order element.
- Cannot avoid volumetric locking and pressure checkerboarding

Brief of EC-SSE-SRI (Our Latest Method)

Brief of EC-SSE-SRI-T4 (in 3D)

[Deviatoric Part]

- Make $\begin{bmatrix} Edge B \end{bmatrix}$ s in the same procedure as ES-FEM.
- Make [Face B] s by re-smoothing three [Edge B] s per face.
- Consider each [^{Face}B] is the value at the center of each face, and <u>assume [B]</u> is linearly distributed in each cell.

- Make four $\begin{bmatrix} Gaus \\ B \end{bmatrix}$ s in each cell as the extrapolation of the four $\begin{bmatrix} Face \\ B \end{bmatrix}$ s.
- Calculate $^{\text{Gaus}}\varepsilon_{\text{dev}}$, $^{\text{Gaus}}\sigma_{\text{dev}}$ and $\{f_{\text{dev}}^{\text{int}}\}$ using each [$^{\text{Gaus}}B$], like the 2nd -order element.

IWACOM-IV 2024

[Volumetric Part]

• Make $\begin{bmatrix} Node B \end{bmatrix}$ s in the same procedure as NS-FEM.

■ Calculate ^{Node} ε_{vol} , ^{Node} σ_{hyd} and $\{f_{vol}^{int}\}$ using each [^{Node}B].

[SRI]

• Make
$$\{f^{\text{int}}\} = \{f^{\text{int}}_{\text{dev}}\} + \{f^{\text{int}}_{\text{vol}}\}.$$

Let me explain with text only

Result & Discussion Performance evaluation of EC-SSE-SRI-T4 in 3D and Discussion of CPU Cost

Static
ImplicitBending of Rubber Cantilever

- 10 x 1 x 1 m cantilever.
- Neo-Hookean hyperelastic material, $E_{ini} = 6$ GPa, $v_{ini} = 0.49$.
- Dead load applied to the tip node.
- A large deflection analysis with $u_z = -6.5$ m at the final state.
- Compared the results of **ABAQUS C3D4** and **EC-SSE-SRI-T4**.

Static **Bending of Rubber Cantilever** Implicit

IWACOM-IV 2024

Static **Bending of Rubber Cantilever** Implicit

Tokyo Institute of Technology

Bending of Rubber Cantilever

<u>Results of EC-SSE-SRI-T4 with Different vinis (Final State)</u>

Static
ImplicitPressuring of Rubber Block

■ 1 x 1 x 1 m block.

- Arruda-Boyce hyperelastic material, $E_{ini} = 24$ GPa, $v_{ini} = 0.49$.
- Applying pressure on ¼ of the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

Outline

Static **Pressuring of Rubber Block** Implicit

Results of EC-SSE-SRI-T4

Tokyo Institute of Technology

Static
ImplicitBarreling of Rubber Cylinder

- 1 m cylinder in radius and height.
- Neo-Hookean hyperelastic material, $E_{ini} = 6$ GPa, $v_{ini} = 0.49$.
- Applying enforced compression displacement on the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

<u>Outline</u>

Static
ImplicitBarreling of Rubber Cylinder

Static Implicit Tensioning of Rubber-Filler Composite

- **Rubber:** Neo-Hookean hyperelastic material ($E_{ini} = 6 \text{ GPa}, \nu_{ini} = 0.49$)
- Iron Filler: Neo-Hookean hyperelastic material ($E_{ini} = 260 \text{ GPa}, v_{ini} = 0.3$)
- Applying enforced tensioning displacement on the top face with lateral confinement.
- Evaluated the result of EC-SSE-SRI-T4.

Static **Tensioning of Rubber-Filler Composite** Implicit

<u>Results of</u> **EC-SSE** <u>-SRI-T4</u> Convergence

failure at 221% stretch ∴ sufficiently robust in large deformation Stress

Mises

Z

No issue in \checkmark Mises stress.

Minor pressure \geq oscillation only in rubber part.

Within acceptable range, I think.

Discussion on CPU Time of EC-SSE-SRI-T4

- Since the most of CPU time for implicit analyses is spent solving the stiffness equation (i.e., [K]{u} = {f}), the size of [K] matrix (N) directly affects the CPU time.
- EC-SSE-SRI-T4 is a purely displacement-based FE formulation; thus, the matrix size (N) is exactly identical to that of FEM-T4.
- EC-SSE-SRI-T4 conducts strain smoothing across FE cells; thus, the matrix bandwidth of [K] is x6.7 wider than that of FEM-T4.

Formulation	Bandwidth of [K]	v.s. FEM-T4 Ratio
FEM-T4	14 nodes x 3 DOF	1
FEM-T10	28 nodes x 3 DOF	2.0
ES-FEM-T4	45 nodes x 3 DOF	3.2
NS-FEM-T4, SelectiveES/NS-FEM	60 nodes x 3 DOF	4.3
EC-SSE-T4, EC-SSE-SRI-T4	94 nodes x 3 DOF	6.7

Therefore, as for calculation speed, EC-SSE-SRI-T4 is about x6.7 slower than FEM-T4.

Discussion on CPU Time of EC-SSE-SRI-T4

- Meanwhile, we should remind that
 - FEM-T4 cannot avoid volumetric locking and pressure checkerboarding,
 - FEM-T10 cannot have large deformation robustness (<u>short-lasting</u>), no matter how fine the mesh is.
- Therefore, I believe, EC-SSE-SRI-T4 is practically acceptable and worth using, even though the CPU time is 7 times longer than FEM-T4.

What do you think?

Summary

Summary

- A next-gen S-FEM, EC-SSE-SRI-T4, was proposed to handle large deformation of rubber-like solids.
- The performance of EC-SSE-SRI-T4 is summarized as follows:
 - No shear/volumetric locking.
 - Minor pressure checkerboarding when $\nu \leq 0.49$.
 - 7 times longer CPU time than FEM-T4 when using the same mesh.
 - ➢ More accurate than conventional T4 elements and SelectiveES/NS-FEM-T4.
 - > More robust (long-lasting) than conventional T10 elements.
- The EC-SSE family would be the standard T4 formulation in the near future.

Thank you for your kind attention!

Appendix

Difference in Formulation

Brief of SSE

- Make $[E^{dge}B]$ in the same procedure as ES-FEM.
- Consider each [^{Edge}B] represents [B] in its edge smoothing domain, and <u>assume [B] is linearly distributing in each cell</u>.
- Make three [Gaus B] in each cell as the average of neighbor two [Edge B] .
- Calculate $^{\text{Gaus}}\varepsilon$, $^{\text{Gaus}}\sigma$ and $\{f^{\text{int}}\}$ using each $[^{\text{Gaus}}B]$ in the same manner as the 2nd -order element.

Conducting strain smoothing twice, the strain/stress are evaluated at each Gauss point.

Strain distribution is piecewise-linear in each cell

- No shear locking with T3/T4 mesh.
- Fast mesh convergence rate in strain/stress.
- Cannot avoid volumetric locking and pressure checkerboarding

