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Background
In the previous talk, F-bar aided edge-based 

smoothed finite element method with tetrahedral 

elements (F-barES-FEM-T4) is presented.

Characteristics of F-barES-FEM-T4 in static analysis 

are as follows.
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✔ Excellent accuracy,

✔ No increase in DOF,

✗ Increase in bandwidth of stiffness matrix.
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Characteristics (1 of 2)
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Our method shows excellent accuracy in static problems!

ABAQUS C3D4H
✗ pressure oscillation

✔ Excellent accuracy

F-barES-FEM-T4(3)

# of cyclic smoothings
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Characteristics (2 of 2)
✔ No increase in DOF

 F-barES-FEM-T4 is a purely displacement-based formulation.

 In contrast to the u/p hybrid formulations, F-barES-FEM-T4 

can be directly applied to explicit dynamics.

✗ Increase in bandwidth of stiffness matrix

 F-barES-FEM-T4 takes longer time to solve the equilibrium 

equations…

 In explicit dynamics, however, we don’t need to solve them!
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F-barES-FEM-T4 would be suitable 

for explicit dynamics of rubber-like materials!
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Objective 

Objective

Evaluate the performance of F-barES-FEM-T4

in explicit dynamics for rubber-like materials.

Table of Body Contents
 Methods: Quick introduction of F-barES-FEM-T4

 Results & Discussion: A few verification analyses

 Summary
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Methods

P. 6



WCCM2016

Procedure of F-barES-FEM (1 of 2)
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ES-FEM

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol
Deformation gradient of each edge, ഥ𝑭 is 

derived as
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Procedure of F-barES-FEM (2 of 2)
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Each part of ഥ𝑭 is calculated as

(1)

Isovolumetric part

Smoothing the value of 

adjacent elements.

↓

The same manner as

ES-FEM

(1)Calculating node’s value by smoothing 

the value of adjacent elements

(2)Calculating elements’ value by smoothing 

the value of adjacent nodes

(3)Repeating (1) and (2) a few times

(2)

Volumetric part

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol
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Advantages of F-barES-FEM
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Like a ES-FEM

1. Shear locking free

Like a NS-FEM

2. Little pressure oscillation 

3. Volumetric locking free

with the aid of F-bar method

Isovolumetric part Volumetric part

This formulation is designed to have 3 advantages.

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol
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Equation to solve
Equation of Motion

𝑀 ሷ𝑢 = 𝑓ext − {𝑓int},

where

𝑓int = ෨𝐵 ത𝑇 𝑉

Time integration

Velocity Verlet method (2nd order simplectic integrator) 
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𝐵-matrix of ES-FEM Stress derived from ഥ𝑭

𝒖𝑛+1 = 𝒖𝑛 + ሶ𝒖𝑛 Δt +
1

2
ሷ𝒖𝑛 Δt2

ሷ𝒖𝑛+1 = 𝑴−1 ({𝒇ext} − {𝒇int(𝒖𝒏+𝟏)})
ሶ𝒖𝑛+1 = ሶ𝒖𝑛 + ሷ𝒖𝑛 + ሷ𝒖𝑛+1 Δt/2

Defenition of 𝑓int

in the same fashion

as F-bar method
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Result & Discussion
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#1 Bending of a cantilever
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 Dynamic explicit analysis.

 Neo-Hookean material

Initial Young’s modulus: 6.0 MPa,

Initial Poisson’s ratio: 0.499,

Density: 10000 kg/m3.

 Compare the results of F-barES-FEM-T4,

Standard T4 (ABAQUS/Explicit C3D4) and 

Selective H8 (ABAQUS/Explicit C3D8) elements.
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Time history of deformed shapes

P. 13

F-barES-FEM-T4(2)

(Proposed method)

✔ No pressure oscillation 

✔ No locking

ABAQUS/Explicit C3D4
(Standard T4 element)

✗ Pressure oscillation

✗ Locking

ABAQUS/Explicit C3D8
(Selective H8 element) 

Reference

Proposed method suppresses pressure oscillation and locking!
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Deformed shapes and pressure distributions
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ABAQUS/Explicit C3D8
(Selective H8 element)

Reference

F-barES-FEM-T4(2)
(Proposed method)

at 𝑡 = 1.5 s

Proposed method is comparable to Selective H8 element!
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Deformed shapes and pressure distributions
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ABAQUS/Explicit C3D4
Standard T4 element

✗Pressure oscillation and locking

Proposed method shows far better solutions than Standard T4!

at 𝑡 = 1.5 s

F-barES-FEM-T4(2)
(Proposed method)
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Time history of displacement
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 Proposed method shows good result without locking.

 The accuracy of displacement does not depend on 

the number of cyclic smoothings.

Standard T4

Proposed &

Reference



WCCM2016

Time history of total energy
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 Energy divergences arise in earlier stage…

 Increasing the number of smoothings suppresses

the speed of divergence.
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#2 Natural mode of a cantilever

P. 18

 Modal analysis.

 Linear elastic material

Young’s modulus: 6.0 MPa,

Poisson’s ratio: 0.499,

Density: 10000 kg/m3.

 Compare the results of F-barES-FEM-T4,

Standard T4 (ABAQUS/Explicit C3D4) and 

Selective H8 (ABAQUS/Explicit C3D8) elements.

Same initial elasticity

as the previous example
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Natural frequencies of each mode
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Natural frequencies of our method agree with

those of reference !

Standard T4

Proposed &

Reference
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Natural mode shapes
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5th 30th

ABAQUS C3D8

(Reference)

F-barES-FEM(2)

(Proposed method)

Mode shapes also agree with the reference solutions.
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Distributions of natural frequencies
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Some natural frequencies have small imaginary part…

Imag.

Part

Increasing the number of smoothings makes 

the frequencies close to real numbers.
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Cause of energy divergence
Due to the adoption of F-bar method,

the stiffness matrix 𝐾 becomes asymmetric.

Equation of Motion: 𝑀 ሷ𝑥 + 𝐾 𝑥 = {𝑓ext}

 Asymmetric stiffness matrix gives rise to imaginary part of 

natural frequencies and instability in dynamic problem.

 As shown before, increasing the number of smoothings

suppress the energy divergence speed.
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asymmetric

Our method is restricted to 

short-term analysis (such as impact analysis)

with a sufficient number of smoothings.
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#3 Swinging of Bunny Ears
Outline

 Iron ears: 𝐸ini = 200 GPa, 𝜈ini = 𝟎. 𝟑, 𝜌 = 7800 kg/m3, 

Neo-Hookean, No cyclic smoothing.

 Rubber body: 𝐸ini = 6 MPa, 𝜈ini = 𝟎. 𝟒𝟗, 𝜌 = 920 kg/m3, 

Neo-Hookean, 1 cycle of smoothing.

 Compared to ABAQUS/Explicit C3D4. No Hex mesh available!
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Iron Ears

Rubber

Body

Fixed

Initial Velocity

of Iron Ears
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Time histories of deformed shapes
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F-barES-FEM-T4

(Proposed method)

ABAQUS/Explicit C3D4

(Standard T4 element)

✗ Pressure oscillation 

✗ Locking
✔ No pressure oscillation

✔ No locking

Proposed method seems be representing
not pressure oscillations but pressure waves.
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Deformed shapes and sign of pressure

Our method represents pressure waves correctly!
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F-barES-FEM-T4

(Proposed method)

✔ Pressure

waves

ABAQUS/Explicit C3D4

(Standard T4 element)

In an early stage

✗ Pressure 

oscillations
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ABAQUS/Explicit C3D4

(Standard T4 element)

✗ Pressure

oscillation

in iron ears

A rubber parts is a “bad apple” when Standard T4 elements are used.

In a later stage

F-barES-FEM-T4

(Proposed method)

Deformed shapes and sign of pressure

✔ No pressure

oscillation

in iron ears

It should be noted that a presence of rubber spoils over all 

accuracy of the analysis with Standard T4 elements.
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Summary

P. 27



WCCM2016

Summary
 F-barES-FEM-T4 was applied to dynamic explicit

analysis.

 A few examples of analysis revealed that our 

method has excellent accuracy on relatively short-

term problems.

On long-term problems, however, our method is 

unstable because of complex natural frequencies.

 Improvement for the long-term stability is our future 

work.
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Thank you for your kind attention.
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Appendix
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Propagation of 1D pressure wave
Outline

 Small deformation analysis.

 Linear elastic material,

Young’s modulus: 200 GPa,

Poisson’s ratio: 0.0,

Density: 8000 kg/m3.

 Results of F-barES-FEM(0), (1), (2), and (3) are compared to 

the analysical solution.
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Propagation of 1D pressure wave
Results
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Velocity Verlet Method
Algorithm

1. Calculate the next displacement 𝑢𝑛+1 as

𝑢𝑛+1 = 𝑢𝑛 + ሶ𝑢𝑛 Δt +
1

2
ሷ𝑢𝑛 Δt2.

2. Calculate the next acceleration ሷ𝑢𝑛+1 as

ሷ𝑢𝑛+1 = 𝑀−1 ({𝑓ext} − {𝑓int(𝑢𝑛+1)}).

3. Calculate the next velocity ሶ𝑢𝑛+1 as

ሶ𝑢𝑛+1 = ሶ𝑢𝑛 + ሷ𝑢𝑛+1 𝛥𝑡

Characteristics

 2nd order symplectic scheme in time.

 Less energy divergence.
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Cause of energy divergence
Due to the adoption of F-bar method,

the stiffness matrix 𝐾 becomes asymmetric

and thus the dynamic system turns to unstable.

Equation of natural vibration, 𝑀 ሷ𝑢 + [𝐾]{𝑢} = {0}, 
derives an eigen equation, ( 𝑀 −1[𝐾]) 𝑢 = 𝜔2{𝑢}, 
which has asymmetric left-hand side matrix.

⇒Some of eigen frequencies could be complex 

numbers.

⇒When an angular frequency 𝜔𝑘 = 𝑎 + i𝑏 （𝑏 > 0）,

the time variation of the 𝑘th mode is
𝑢 𝑡 = Re 𝑢𝑘 exp −i𝜔𝑘𝑡

= Re 𝑢𝑘 exp −i𝑎𝑡 exp 𝑏𝑡
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Divergent term!


