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Motivation
What we want to do:

 Solve hyper large deformation

analyses accurately and stably.

 Treat complex geometries 

with tetrahedral meshes.

 Consider nearly incompressible materials (𝝂 ≃ 𝟎. 𝟓).

 Support contact problems.

 Handle auto re-meshing.
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Issue in Ordinary T10 Elements
Issue

When we use 10-node tetrahedral (T10) mesh,

the number of nodes gets much larger

to express complex shapes without element kink.

 Skewed T4                     ✗Kinked T10

Possible Solutions
1. Robust T10 element   (method in the previous talk)

2. Accurate T4 element  (method in THIS talk)
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Our T4 Method for Static Problems
Our group has proposed a new S-FEM-T4 formulation, 

F-barES-FEM-T4, detailed later.
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ABAQUS C3D4H
✗ pressure oscillation

F-barES-FEM-T4(3)

# of cyclic smoothings

F-barES-FEM-T4 shows excellent accuracy in static problems!
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Our T4 Method for Dynamic Problems
Our group has proposed another S-FEM-T4 

formulation, SymF-barES-FEM-T4, detailed later.
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SymF-barES-FEM-T4 shows good accuracy and stability

in dynamic problems!

SymF-barES-FEM-T4(2)ABAQUS/Explicit C3D8
(H8-SRI element) 

F-barES-FEM-T4(2)

✗ Energy divergence
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Objective 
FAQ
How about the stability in dynamic contact problems?

Objective

To evaluate the stability of SymF-barES-FEM-T4

in explicit dynamics with contact.

Table of Body Contents

 Methods: Quick introduction of SymF-barES-FEM-T4

 Results & Discussion: A few verification analyses

 Summary
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Methods
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Formulation of F-barES-FEM (1 of 2)
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ES-FEM

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol

Deformation gradient of each edge (ഥ𝑭)

is derived as
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Formulation of F-barES-FEM (2 of 2)
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Each part of ഥ𝑭 is calculated as follows.

(1)

Isovolumetric part

Smoothing Fs of adjacent 

elements at each edge.

↓

The same manner as

ES-FEM.

(1)Calculating node’s F by smoothing

Fs of adjacent elements.

(2)Calculating elements’ F by smoothing

Fs of adjacent nodes.

(3)Repeating (1) and (2) a few times.

(This is named “cyclic smoothing”.)

(2)

Volumetric part

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol

NS-FEM

NS-FEM-1

ES-FEM
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Advantages of F-barES-FEM
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Like ES-FEM

1. Shear locking free

Like NS-FEM

2. Little pressure oscillation 

3. Volumetric locking free

with the aid of F-bar method

Isovolumetric part Volumetric part

This formulation is designed to have 3 advantages.

ഥ𝑭 = ෩𝑭iso ∙ ഥ𝑭vol
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Issue of F-barES-FEM in Dynamics
Issue: Energy divergence occurs.

∵ Due to the adoption of F-bar method, 

the stiffness system is no longer symmetric.

In F-barES-FEM, the internal force vector is calculated 

as

𝑓int = ෍ ෨𝐵 ത𝑇 ෨𝑉

Combination of ෨𝐵 , {ത𝑇} and ෨𝑉 (mixture of ෦ and ) 

causes asymmetry of the dynamic system.
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𝐵-matrix of ES-FEM Stress derived from ഥ𝑭

Defenition of 𝑓int

in the same fashion

as the original

F-bar method

Volume of ES-FEM
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𝑓int = ෍ ത𝐵 ത𝑇 ത𝑉

Formulation of SymF-barES-FEM
In SymF-barES-FEM, the derivation of the internal 

force vector is slightly modified.

F-barES-FEM:

SymF-barES-FEM:

The replacements ( ෨𝐵 to [ ത𝐵] & ෨𝑉 to ത𝑉) help to 

preserve the symmetry of the stiffness system.
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𝐵-matrix

derived from ഥ𝑭
Stress

derived from ഥ𝑭

Volume

derived as

det ഥ𝑭 𝑉ini

𝑓int = ෍ ෨𝐵 ത𝑇 ෨𝑉
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Result & Discussion
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Twist of Rubber Cantilever
Outline

 No contact.

 Dynamic explicit analysis.

 Twisting initial velocity fields: 

𝒗0 𝑥, 𝑦, 𝑧 = 100 sin
𝑦𝜋

12
𝑧, 0, −𝑥 𝑇 .

 Neo-Hookean material:
Initial Young’s modulus: 17.0 MPa,

Initial Poisson’s ratio: 0.49,

Density: 1100 kg/m3.

 Compare the results of 

SymF-barES-FEM-T4,

F-barES-FEM-T4, and 

ABAQUS/Explicit C3D8.
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Twist of Rubber Cantilever
Comparison of Pressure and Shape
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F-barES-FEM-T4(2)

✔ No pressure oscillation 

✔ No locking

✗ Energy divergence

ABAQUS/Explicit C3D8

(H8-SRI)

SymF-barES-FEM-T4(2)

✔ Less pressure oscillation

✔ No locking

✔ No energy divergence
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Twist of Rubber Cantilever
Comparison of total energy
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SymF-barES-FEM-T4 can suppress energy divergence!

F-barES-

FEM-T4

SymF-barES-FEM-T4

(60,000 timesteps)
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Time history of displacement
Comparison of axial displacement at a tip node

P. 17

Standard T4

Proposed

Proposed methods can show good results as H8-SRI.
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Twist of Rubber Cantilever
Effect of the number of cyclic smoothing
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F-barES-FEM-T4 SymF-barES-FEM-T4

#cyclic

smoothings
1 2 3 1 2 3

In SymF-barES-FEM-T4, the increase in cyclic smoothings

no longer improves the accuracy, unlike F-barES-FEM-T4.
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Impact of Rubber Bullet 
Outline

 ¼ bullet made of nearly incompressible rubber.

 Impacting the bullet to a slippery rigid wall with a uniform 

initial velocity.

 Compared to ABAQUS/Explicit C3D4 with a same mesh.
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Impact of Rubber Bullet 
Mises

stress

Anim.

of

SymF-bar

ES-FEM

-T4(1)
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Impact of Rubber Bullet 
Comparison of pressure dist. in a contact state
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SymF-barES-FEM-T4(1)ABAQUS/Explicit C3D4 F-barES-FEM-T4(1)

Our methods represent far better 

pressure distributions without major checkerboarding.
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Impact of Rubber Bullet 
Comparison of total energy over time
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SymF-barES-FEM-T4

SymF-barES-FEM-T4 conserves the total energy 

even in a contact problem.
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Impact of Rubber Bunny
Outline

 A Stanford bunny made of nearly incompressible rubber

(neo-Hookean hyperelastic body with 𝜈ini = 𝟎. 𝟒𝟗.) 

 Impacting the bunny to a slippery rigid wall with a uniform 

initial velocity.

 Compared to ABAQUS/Explicit C3D4 with a same mesh.
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Initial velocity

10 m/s (uniform)

Rigid Wall

contact condition:

free-slip &

free-separation

Rubber body

𝐸ini = 6.0 MPa

𝜈ini = 𝟎. 𝟒𝟗
𝜌 = 920 kg/m3
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Impact of Rubber Bunny
Pressure sign anim.
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SymF-barES-FEM-T4(1)

✔ Less pressure checker

✔ No locking

✔ No energy divergence

ABAQUS/Explicit C3D4

✗Pressrue checkerboard

✗Locking

✔ No energy divergence

F-barES-FEM-T4(1)

✔ No pressure checker

✔ No locking

✗ Energy divergence
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Impact of Rubber Bunny
Pressure sign dist. right after contact 
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Our methods can capture the pressure 

wave propagation in a complex body.

SymF-barES-FEM-T4(1)ABAQUS/Explicit C3D4 F-barES-FEM-T4(1)

✔ Pressure wave propagation✗Pressure checkerboard
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Impact of Rubber Bunny
Comparison of total energy over time
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SymF-barES-FEM-T4 conserves the total energy

in a contact problem even with complex shapes.

SymF-barES-FEM-T4

(150,000 timesteps)
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Summary
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Summary
 The accuracy and stability of SymF-barES-FEM-T4

in dynamic explicit contact problems was evaluated. 

 SymF-barES-FEM-T4 realizes

✔ Less pressure oscillation

✔ No locking

✔ No energy divergence

 Further improvement for perfect suppression of 

pressure oscillation is our future work.
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Thank you for your kind attention.
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Appendix
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Benefits and Drawbacks of F-barES-FEM-T4

Drawbacks

✗ Slow speed of calculation.

In explicit analyses, [K] is unnecessary; yet, CPU Time 

increases gradually with the # of cyclic smoothings.
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